
Explorations in the Mathematics of

Inviscid Incompressible Fluids

Markus Vinzenz Kliegl

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Program in

Applied and Computational Mathematics

Adviser: Peter Constantin

January 2016



c© Copyright by Markus Vinzenz Kliegl, 2015.

All Rights Reserved



Abstract

The main subject of this dissertation is smooth incompressible fluids. The emphasis

is on the incompressible Euler equations in all of R2 or R3, but many of the ideas and

results can also be adapted to other hydrodynamic systems, such as the Navier-Stokes

or surface quasi-geostrophic (SQG) equations. A second subject is the modeling of

moving contact lines and dynamic contact angles in inviscid liquid-vapor-solid systems

under surface tension.

The dissertation is divided into three independent parts:

First, we introduce notation and prove useful identities for studying incompressible

fluids in a pointwise Lagrangian sense. The main purpose is to provide a unified

treatment of results scattered across the literature. Furthermore, we prove several

analogs of Constantin’s local pressure formula for other nonlocal operators, such as

the Biot-Savart law and Leray projection. Also, we define and study properties of a

Lagrangian locally compact Abelian group in terms of which some nonlocal formulas

encountered in fluid dynamics may be interpreted as convolutions.

Second, we apply the algebraic theory of scalar polynomial orthogonal invariants to

the incompressible Euler equations in two and three dimensions. Using this framework,

we give simplified proofs of results of Chae and Vieillefosse. We also investigate other

uses of orthogonal transformations, such as diagonalizing the deformation tensor along

a particle trajectory, and comment on relative advantages and disadvantages. These

techniques are likely to be useful in other orthogonally invariant PDE systems as well.

Third, we propose an idealized inviscid liquid-vapor-solid model for the macroscopic

study of moving contact lines and dynamic contact angles. Previous work mostly

addresses viscous systems and frequently ignores a singular stress present when the

contact angle is not at its equilibrium value. We also examine and clarify the role that

disjoining pressure plays and outline a program for further research.
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Preface

This is perhaps a somewhat unusual dissertation: The topics are fairly wide-ranging

and there are no major new theorems. Nevertheless, I believe there is value.

What happened is this:

I set myself the goal of finding new ways of understanding inviscid incompressible

fluids with the hope of shedding new light on the question of global regularity in three

dimensions. The study of the incompressible Euler equations in R3 and T3 is a very

mature field by now, and it is clear that major progress requires deep new insight.

One after another, however, my ideas either turned out to have already been studied

before or simply failed to produce new insights beyond what was known already.

Now it is frequently preached, but seldom practiced, that scientists ought to

document their negative as well as their positive results. In mathematics, I view the

purpose of this as follows:

1. It deters other minds from making the same dead-end investigations.

2. It invites other minds to try to complete the investigation or at least draw

inspiration for their own work.

3. Most importantly, it encourages work on more interesting problems. When only

publication of positive results is rewarded, people naturally work on more “safe”

problems such as minor technical improvements of known results or contrived

problems easily seen to be solvable by current methods. Such work seldom leads

to great new insight or innovation.

With the first two points in mind, I have tried to document the more substantial

of my “explorations” in Chapters 2 and 3. They also provide a unified exposition of

some ideas otherwise found in rather disparate segments of the literature, and I hope

this juxtaposition may also be of value.
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Chapter 4, finally, represents an attempt to move into a less mature field. However,

even just formulating a concrete system to study, and a concrete research question

to address, turned out to be a far more complex task than I originally imagined.

Nonetheless, and with especially the second point in mind, I have tried to document

what I in the end think could be an interesting research program.
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Chapter 1

Introduction

1.1 Structure of this dissertation

The main body of this dissertation is divided into three chapters that can be read

independently. In Chapters 2 and 3, we explore properties of smooth incompressible

fluids, especially smooth solutions to the incompressible Euler equations in R2 and R3.

In Chapter 4, we turn our attention to modeling inviscid liquid-vapor-solid systems

under surface tension. Finally, we provide an Appendix A that lists some identities

used throughout the dissertation.

The remainder of this chapter is organized as follows: In §1.2, we summarize the

main points of Chapters 2–4. In §1.3, we explain our reasons for focusing on the

incompressible Euler equations. In §1.4, we explain our notation and establish some

conventions.

1.2 Overview of the main chapters

In Chapter 2, we begin by introducing notation and proving a number of identities

that are useful for studying incompressible fluids pointwise along Lagrangian particle

paths. Although most of these ideas may already be found in the literature, the reader
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may find our unified exposition helpful.

Next, we prove several analogs of the local pressure formula of Constantin [22] for

other nonlocal operators of interest in the study of incompressible fluids, including

the Biot-Savart law and Leray projection. An example is the formula

u(x, t)−−
∫
Sr(x)

u(y, t) dS(y) = − 1

4π

∫
Br(x)

(x− y)× (ω(y, t)− ω(x, t))

|x− y|3
dy . (1.1)

It is local in the sense that the right-hand side can be made to depend on an arbitrarily

small neighborhood of x by choosing r sufficiently small. The trade-off is that the

left-hand side is no longer just u(x, t). Such formulas are useful for, e.g., proving

Hölder estimates.

Finally, we observe that, upon defining

a⊕ b := A(X(a, t) +X(b, t), t) , (1.2)

hydrodynamic integro-differential equations of the form

DtX(a, t) =

∫
Rn

K(X(a, t)−X(b, t))F(X(b, t),∇bX(b, t), ϕ(b)) db (1.3)

can be viewed as convolutions with respect to ⊕,

DtX(a, t) =

∫
Rn

K(a	 b)F(X(b, t),∇bX(b, t), ϕ(b)) db . (1.4)

We state some properties of the LCA group (Rn,⊕), such as the existence of an Lp

convolution inequality, and of its associated Fourier transform.

Although parts of the chapter are written explicitly for the incompressible Euler

equations in R3, most of the ideas and results also apply or can be adapted to other

incompressible hydrodynamic systems.
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In Chapter 3, we apply the algebraic theory of scalar polynomial orthogonal

invariants to the incompressible Euler equations in two and three dimensions. For

three dimensions, this leads to a system of the form



Dtη = 3β − ϕ− π1 ,

Dtµ = 2ϕ ,

Dtβ =
2

3
η2 +

4

3
ηµ− 2ψ + π2 ,

Dtϕ = −2

3
µ2 +

8

3
ηµ− 2ψ + π3 ,

Dtψ =
4

3
ηϕ− 1

3
µϕ+ 3µβ + π4 ,

(1.5)

where η, µ, β, ϕ, ψ are scalar invariants related to ∇xu, while the πi invariants also

depend on the pressure Hessian.

To illustrate the usefulness of this framework, we give a simpler proof of the

following a priori bound of Chae [17]:

sup
0<t<T

||ω||L2
x
≤ exp

(∫ T

0

||λ+
2 ||L∞x dt

)
||ω0||L2

x
. (1.6)

(Here λ2 denotes the intermediate eigenvalue of the deformation tensor D.) We also

give a simpler discussion of a model of Vieillefosse [113,114].

Finally, we investigate other uses of orthogonal transformations, such as rotating

the reference frame in order to diagonalize the deformation tensor along a particle

trajectory, and comment on relative advantages and disadvantages of this approach

over the use of the scalar polynomial invariants.

The techniques in this chapter are likely to be useful in other orthogonally invariant

PDE systems as well.

In Chapter 4, we discuss some issues related to modeling inviscid liquid-vapor-

solid systems that allow for moving contact lines and dynamic contact angles. After
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reviewing the static case, we give two derivations of an idealized augmented Young-

Laplace law,

JpK = γH + γ
cos θs − cos θ

sin θ
δΣ . (1.7)

(In the literature, mostly the viscous case is discussed and the term with the Dirac

measure is frequently ignored.) Drawing on the free boundary variational calculus

literature, we discuss how to interpret the Dirac measure, especially in the static case.

Furthermore, we examine how to incorporate disjoining pressure in the model and

clarify its role. In particular, we dispel the notion found in some literature that the

Dirac mass should be physically interpreted as the macroscopic limit of a disjoining

pressure term.

Many open questions remain, and we end by outlining a program for further

research, both mathematical and physical.

1.3 Reasons for studying the Euler rather than the

Navier-Stokes equations

Substantially more research is directed at the Navier-Stokes than the Euler equations.

For physicists and engineers, this makes sense, as viscosity is frequently important in

applications, especially close to boundaries. However, for mathematicians interested

in questions of global regularity, especially in boundaryless settings like the torus T3

or all of R3, it may make sense to first focus on the Euler equations. This is true

regardless of whether one believes in finite-time blowup or not.

If one expects finite-time blowup, it should be easier to prove this for the Euler

equations first, since viscosity usually has a regularizing effect.1 (Indeed, Luo and

Hou [78] recently provided numerical evidence for finite-time blowup in the Euler

1Usually but not always. There is, for example, the Turing instability phenomenon in which
adding viscosity can make an otherwise linearly stable system unstable. See, for example, §4.1.2 in
Evans [51].

4



equations, though at a boundary.)

If, on the other hand, one expects global regularity, this is likely due to some

sort of “nonlinear depletion” already present in the Euler equations rather than the

regularizing effect of viscosity. It is well-known that the viscous problem remains

supercritical, i.e., there is a “finite gap” between what norms we have control over

and what norms we would need to control in order to prove global regularity (see, e.g.,

Constantin [27]). This is perhaps best exemplified by the Ladyzhenskaya-Prodi-Serrin

criteria (see, e.g., Seregin [103] and references therein). Conversely, without some sort

of extra depletion coming from the specific structure of the fluid equations, we would

expect finite-time blowup. Tao [110] has, in a sense, formalized this, showing that

there are equations, superficially similar to the Navier-Stokes equations in terms of

scaling and conserved quantities, that blow up in finite time.

Two potential sources of nonlinear depletion have been identified in the litera-

ture. First, convection appears to have a regularizing effect, as first observed by

Constantin [24] using his “distorted Euler equations” model, and later by Hou and C.

Li [66] in a one-dimensional model of the axisymmetric Navier-Stokes equations. (See

also the three-dimensional axisymmetric study by Hou and Lei [65].)

Second, in regions of high enstrophy, the vorticity tends to form vortex tubes

where the direction of vorticity does not vary strongly. This parallel alignment of

vorticity in turn leads to a geometric depletion of nonlinearity identified by Constantin,

Fefferman, and Majda [29,30]. For some recent numerical evidence of this regularizing

mechanism, we refer to the paper by Hou and R. Li [67].

A full and quantitative understanding, however, of the extent and limits of nonlinear

depletion has not yet been achieved. This then is our preferred framing of the global

regularity question for both the Euler and the Navier-Stokes equations:

What are the depletion mechanisms and are they always strong enough

to prevent blowup? Or else can we identify conditions where they are not

5



strong enough and then exploit them to construct solutions that blow up in

finite time?

1.4 Notation and conventions

Convention 1.4.1. For the Euler equations, we will denote the velocity by u, the

vorticity by ω, the pressure by p, and occasionally write N for ∇xu and P for ∇x∇xp.

Following Majda and Bertozzi [79], we write D for the symmetric part of ∇xu and Ω

for the skew-symmetric part.2

If S is a tensor of rank k, and T is a tensor of rank `, then S ⊗ T and S · T are

tensors of rank k + ` and k + `− 2, respectively, defined by

(S ⊗ T )i1···ikj1···j` = Si1···ikTj1···j` , (1.8)

(S · T )i1···ik−1j2···j` = Si1···ik−1mTmj2···j` . (1.9)

Note that in the last equation and throughout, we adopt the Einstein convention of

implicit summation over repeated indices (m in the above), unless explicitly stated

otherwise, or an index appears non-repeated on one side of the equation. For example,

in an equation like Aij = λiδij, the index i is not summed over since it appears only

once on the left-hand side.

We are, unfortunately, at odds with most of the fluids and continuum mechanics

literature with the following convention.

Convention 1.4.2. For a tensor T of rank k, by ∇xT we mean the tensor

(∇xT )i0i1i2···ik = ∂xi0Ti1i2···ik (1.10)

2In the literature one also finds the use of S and J , or S and A, instead of D and Ω. Also, Ω
is occasionally used for something altogether different, for example the tensor ω ⊗ ω − 1

3 |ω|
2, or a

global rotation. With hindsight, we actually prefer the notation S and A.
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of rank k+1. That is, the derivative is the first index of the tensor ∇xT . By divx T we

mean the tensor of rank k − 1 obtained from ∇xT by contracting the first two indices,

that is

(divx T )i2···ik = (∇x · T )i2···ik = ∂xjTji2···ik . (1.11)

The advantage in our context is that u · ∇xT may naturally be interpreted as the

tensor contraction defined above or the usual matrix product u>(∇xT ). Also, the

relation between Ω and ω is simply

Ωij =
1

2
εijkω

k , (1.12)

without a minus sign. In practice, results in this dissertation will look slightly different

when compared to most of the literature, with transposes in different places, the order

of matrix multiplications reversed, and so on. However, if aware of this, it is easy to

translate back and forth.

To alleviate index clutter, we will mostly write indices for components of vectors

as superscripts and indices for partial derivatives as subscripts, for example

(∇ax)ij = xjai , ωk = εk`mu
m
x`
, urz = ∂z(er · u) . (1.13)

Finally, although there are some very interesting recent results related to weak

solutions of the Euler equations due to De Lellis and Székelyhidi [37], in this dissertation

we will solely be concerned with smooth solutions. For practically every incompressible

hydrodynamic system, there is already a well-developed local-in-time well-posedness

theory in sufficiently regular Hölder and Sobolev spaces. For the Euler and Navier-

Stokes equations, we refer to, for example, the book of Majda and Bertozzi [79]. We

restrict ourselves to studying properties of these smooth (and decaying or periodic)

solutions already known to exist for at least a finite time interval.
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Convention 1.4.3. All functions occurring (such as velocity, flow map, pressure,

vorticity) are assumed to be sufficiently smooth and sufficiently decaying (or periodic)

for the various calculations to make sense.
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Chapter 2

Observations on Incompressible

Fluids

This chapter is concerned with some general properties of incompressible fluids.

Although we write with an emphasis on the incompressible Euler equations in R3,

most of the statements in this chapter either apply directly or can be easily adapted

to any of the other commonly encountered incompressible hydrodynamic systems in

two and three dimensions.

We remind the reader that throughout this dissertation, unless stated otherwise,

we assume that we already have a smooth divergence-free velocity field u ∈ L2(R3) for

at least some finite interval of time.

Let us also recall some standard notions for incompressible flows. The trajectory

of a particle initially at position a is denoted by X(a, t). For each “particle label” a,

X(a, ·) is determined by the ODE


d

dt
X(a, t) = u(X(a, t), t) ,

X(a, 0) = a .

(2.1)

As long as u is smooth, X(·, t) is smooth and has a smooth inverse, the “back-to-labels”
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map x 7→ A(x, t), which satisfies

∂tA(x, t) + u · ∇xA(x, t) = 0 . (2.2)

We refer to (x, t) as Eulerian coordinates and (a, t) as Lagrangian coordinates.

Many of our statements will involve the quantity

J(x, t) := (∇aX)(A(x, t), t) . (2.3)

Clearly, J(·, 0) = I. Furthermore, from divx u = 0 and the evolution of J , it follows

that det J = 1 for all time.

The rest of the chapter is structured as follows. In §2.1, we introduce notation for

working with expressions involving both Eulerian and Lagrangian derivatives, and

prove some useful identities involving J . In §2.2, we study some properties of two

types of vector field evolutions frequently encountered in incompressible flows. In §2.3,

we briefly discuss reformulations of the Euler equations under two particular gauge

choices. In §2.4, we give “local” versions of nonlocal formulas like the Biot-Savart

formula and Leray projection that are of great relevance to the study of incompressible

fluids. In §2.5, we introduce a locally compact Abelian group (Rn,⊕) in terms of which

some Lagrangian expressions encountered in various fluid systems may be understood

as convolutions.

Finally, some remarks on the novelty of the material in this chapter: Although

we discovered much of the material in §§2.1–2.3 for ourselves, after more thorough

literature review, we found that many of the observations in these sections are not new.

In fact, some of them were reported more than 30 years ago. As much as possible,

we have tried to include the most relevant references, but we cannot claim complete

coverage. We hope the reader still finds our exposition useful, since it brings together

ideas that are scattered in the literature. The computations and ideas in §§2.4–2.5
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are, to the best of our knowledge, truly new.

2.1 Mixing Eulerian and Lagrangian derivatives

2.1.1 Motivation

There are tantalizing hints that the Lagrangian framework is more natural for the

study of the regularity of fluid mechanical systems. In two dimensions, it is that

the vorticity is conserved along Lagrangian particle trajectories. In three dimensions,

there are the Cauchy invariants (for a nice history of these, see [55]). In arbitrary

dimensions, Lagrangian particle trajectories are analytic as long as the velocity is C1,α.

(This result is apparently due in some form to Liechtenstein in 1925 and was then

rediscovered or reproved several times since the 1990’s. For some more recent papers

on this topic we refer to, e.g., [34, 56, 119].) Another nice example is Constantin’s

use of Lagrangian variables to prove uniqueness for systems like Oldroyd-B in low

regularity [28]. See also [32].

Integrated conserved quantities like the energy 1
2
||u||2L2 or the helicity

∫
Rn u · ω dx,

of course, are indifferent to the use of Eulerian and Lagrangian coordinates: thanks

to incompressibility, we have | det J | = 1 and so changing variables does not affect

the integral. However, these conserved quantities have proved not strong enough

to control the global regularity of the fluid in three dimensions. (From scaling, it

is clear that u ∈ L2 is not enough, and although helicity scales critically for the

Navier-Stokes equations, it does not have a definite sign. Constantin and Majda gave

a decomposition of the helicity into a difference of two positive quantities [33], and Lei,

Lin and Zhou used a similar decomposition to construct a class of arbitrarily large

initial-data global solutions [76]. But this decomposition is still not strong enough

to say anything about the general case.) The time seems ripe to focus on pointwise

Lagrangian statements.
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2.1.2 Notation

As is common, we will want to work in Eulerian coordinates, but will frequently

need Lagrangian derivatives. We will also want to freely mix all four derivatives

∂t,∇x, Dt,∇a in expressions.

To accomplish this, we define (abusing notation slightly) operators Dt and ∇a

acting on functions of Eulerian coordinates as

Dtf := (Dt(f ◦X)) ◦ A = (∂t + u · ∇x)f , (2.4)

∇af := (∇a(f ◦X)) ◦ A = J∇xf , (2.5)

where J := (∇aX) ◦ A = ∇ax = (∇xA)−1. Note also J−1 = ∇xA and so we have

∇x = J−1∇a. By f ◦X we mean composition in the following sense:

(f ◦X)(a, t) := f(X(a, t), t) , (2.6)

(g ◦ A)(x, t) := g(A(x, t), t) . (2.7)

Of course, we can similarly define operators ∂t and ∇x acting on functions of

Lagrangian coordinates via

∇x = K∇a = (∇xa)∇a , (2.8)

∂t = Dt − u · ∇x = Dt − (J>Ẋ)∇a , (2.9)

where K := (∇xA) ◦X = ∇xa = (∇aX)−1.

Whether to write everything in terms of Eulerian or Lagrangian coordinates is an

arbitrary choice. But since in the literature it is most common to define quantities like

the vorticity ω as functions of Eulerian coordinates, we will adhere to the following

convention in all of the following except in §2.5.

12



Convention 2.1.1. Unless stated otherwise, all our functions are assumed to be

functions of Eulerian coordinates. For example, when we write u, we mean u(x, t) and

not u(X(a, t), t).

There are at least two quantities, however, that are most naturally expressed

in terms of Lagrangian coordinates. These are the initial velocity and vorticity

transported by the fluid. The latter is needed to express the Cauchy invariants.

Rather than writing u0 ◦A or ω0 ◦A, we will instead introduce new symbols ψ and ϕ

to represent these quantities as functions of Eulerian coordinates:

ψ(x, t) = u0(A(x, t)) , (2.10)

ϕ(x, t) = ω0(A(x, t)) , (2.11)

Dtϕ = Dtψ = 0 . (2.12)

We provide Table 2.1 for translation between functions of Eulerian coordinates

and functions of Lagrangian coordinates.

Remark 2.1.2. When working in Lagrangian variables, Dt is really just the partial

time derivative ∂
∂t

. To make translating between Eulerian and Lagrangian expressions

easier, however, we will keep the notation Dt for this partial time derivative and, by

abuse of notation, define ∂t := Dt − (K>Ẋ) · ∇a to be the Eulerian time derivative.

The “proper” thing to do would be to call the Lagrangian time variable something

different, say τ . Then we could write ∂τ instead of Dt and less confusion would arise.

However, use of t in both settings is ubiquitous in the literature, and we will not

deviate from this custom here.
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Eulerian Lagrangian

f f ◦X
g ◦ A g

∇x ∇x := K∇a

∂t ∂t := Dt − (K>Ẋ) · ∇a

∇a := J∇x ∇a

Dt := ∂t + u · ∇x Dt

x X
A a

u Ẋ = DtX
ϕ ω0

ψ u0

J = ∇ax K−1 = ∇aX
J−1 = ∇xA K = ∇xa

Table 2.1: Translating between functions of Eulerian coordinates and functions of
Lagrangian coordinates

2.1.3 Commutators of the Eulerian and Lagrangian deriva-

tive operators

The operators ∂t,∇x do not commute with the operators Dt,∇a. We summarize

some ways of expressing the commutators in Table 2.2. We present here only the

computation of the Lagrangian versions of the last two commutators listed in the

table, as the others are trivial to derive. First, we compute

[∂t, Dt] = ∂tu · ∇x = ∂tu · (J−1∇a) = (J−>∂tu) · ∇a . (2.13)

Observing that

Dt(J
−>u) = J−>Dtu− J−>(∇xu)>u = J−>(Dtu− u · ∇xu) = J−>∂tu , (2.14)

we arrive at

[∂t, Dt] = (Dt(J
−>u)) · ∇a . (2.15)
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Next, we compute

[∂t,∇a] = (∂tJ)∇x = (DtJ − u · ∇xJ) (2.16)

= (DtJ − u · J−1∇aJ)J−1∇a (2.17)

= ((∇au)J−1 + u(∇aJ
−1))∇a (2.18)

= (∇a(J
−>u))∇a . (2.19)

Commutator Eulerian derivatives Lagrangian derivatives

[∇x,∇a] (∇xJ)∇x −(∇aJ
−1)∇a

[∇x, Dt] (∇xu)∇x −(DtJ
−1)∇a

[∂t, Dt] (∂tu) · ∇x −(Dt(−J−>u)) · ∇a

[∂t,∇a] (∂tJ)∇x −(∇a(−J−>u))∇a

Table 2.2: Commutators of the Eulerian and Lagrangian derivative operators

Remark 2.1.3. This suggests thinking of −J−>u as a sort of Lagrangian transport

velocity. We discuss this idea a little more in §2.1.5.

2.1.4 Differential identities related to J

Lemma 2.1.4. We have

DtJ = J(∇xu) , (2.20)

DtJ
> = (∇xu)>J> , (2.21)

DtJ
−1 = −(∇xu)J−1 , (2.22)

DtJ
−> = −J−>(∇xu)> . (2.23)

Proof. Taking ∇a of Dtx = u, we find DtJ = ∇au = J∇xu. The other equations

follow from the differential matrix identity DtM
−1 = −M−1(DtM)M−1 and taking

transposes.

15



Proposition 2.1.5. We have

divx J
> = 0 , (2.24)

diva J
−> = 0 , (2.25)

or, written out explicitly,

xjaiamA
m
xj

= 0 , (2.26)

Amxpx`x
`
am = 0 . (2.27)

Proof. From DtJ = J(∇xu), we have

DtJ
ij
xm + ukxmJ

ij
xk

= J i`xmu
j
x`

+ J i`ujx`xm . (2.28)

Summing over m = j, the right-most term vanishes thanks to divx u = 0, and the

other two terms cancel. So we are left with just DtJ
ij
xj

= 0, that is,

Dt(divx J
>) = 0 . (2.29)

Since J>(x, 0) = I, it follows that divx J
> = 0. Written out explicitly, this says

∂xjx
j
ai

= Amxjx
j
aiam

= 0 . (2.30)

Noting that I = JJ−1, i.e.,

δim = xjaiA
m
xj
, (2.31)

and taking ∂am , we find (using (2.30)),

0 = xjaiA
m
xjx`

x`am . (2.32)
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Multiplying by Aixp , this simplifies to

Amxpx`x
`
am = 0 . (2.33)

Proposition 2.1.6. For a differentiable tensor field T (x), we have

∇xT = diva(J
−> ⊗ T ) , (2.34)

∇aT = divx(J
> ⊗ T ) , (2.35)

and

divx T = diva(J
−>T ) , (2.36)

diva T = divx(J
>T ) . (2.37)

Proof. By Proposition 2.1.5, we have diva J
−> = 0. Thus,

diva(J
−> ⊗ T ) = (diva J

−>)⊗ T + J−1∇aT = 0 +∇xT . (2.38)

Contraction over the first two indices gives diva(J
−>T ) = divx T . The identities for

∇aT and diva T are proved similarly.

Proposition 2.1.7. In three dimensions, for a differentiable vector field v(x), we

have

curla(Jv) = J−> curlx v , (2.39)

curlx(J
−1v) = J> curla v . (2.40)
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Proof. We compute

[curla(Jv)]i = εijk∂aj(x
`
ak
v`) = (εijkx

`
ajak

)v` + εijkx
`
ak

(xmaj∂xm)v` . (2.41)

The first term on the right-hand side vanishes since εijk is skew-symmetric under

j ↔ k, while x`ajak is symmetric under j ↔ k. For the second term, we need the

identity

εpm`M
−1
pi = εijkMjmMk` , (2.42)

valid for all 3× 3 unit-determinant matrices M (see §A.3). Taking M = ∇ax = J , we

get

[curla(Jv)]i = J−>ip εpm`v
`
xm = [J−> curlx v]i . (2.43)

The proof of the second identity is similar.

Remark 2.1.8. A similar formula to Proposition 2.1.7 is proved in the appendix of a

1989 paper by Vishik [115]. See also Friedlander and Vishik [54].

Lemma 2.1.9. For a matrix M , we have

Dt(JMJ>) = J(DtM + (∇xu)M +M(∇xu)>)J> , (2.44)

Dt(JMJ−1) = J(DtM + [∇xu,M ])J−1 . (2.45)

Proof. Apply the Leibniz rule to the left-hand sides and use Lemma 2.1.4.

Corollary 2.1.10. The right1 Cauchy-Green tensor JJ> evolves according to

Dt(JJ
>) = 2JDJ> . (2.46)

Proof. Take M = I in Lemma 2.1.9.

1Recall our unusual index ordering, Jij = xjai . In the continuum mechanics literature, this tensor
is usually written as J>J .
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Application to the Euler equations

Corollary 2.1.11. We have

Dt(JDJ>) = J(NN> − P )J> , (2.47)

Dt(JΩJ>) = 0 . (2.48)

Proof. For the Euler equations, DtN = −N2 − P . Taking M = N in Lemma 2.1.9,

we thus find

Dt(JNJ
>) = J(−N2 − P +N2 +NN>)J> = J(NN> − P )J> . (2.49)

Since the operation A 7→ JAJ> preserves (skew-)symmetry, decomposing this equation

into symmetric and skew-symmetric parts gives the statement of the corollary.

Remark 2.1.12. From this corollary, it follows by integrating along particle trajectories

that (JΩJ>)(X(a, t), t) = Ω0(a). This is an analog of the Cauchy formula in arbitrary

dimension.

Remark 2.1.13. In view of Corollaries 2.1.10 and 2.1.11, it is natural to consider the

quantity P̃ = P −NN>. Note that P̃ is still symmetric, but is no longer the Hessian

of a scalar function. In terms of P̃ , we have

Dt(JDJ>) = −JP̃J> , (2.50)

and

DtD = −2D2 − P̃ − [Ω,D] . (2.51)

See also Remarks 3.4.4 and 3.5.5 for more formulas that become nicer when using P̃ .
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Remark 2.1.14. Another straightforward application of Lemma 2.1.9 is the identity

Dt(JNJ
−1) = J(DtN)J−1 . (2.52)

2.1.5 A sort of Lagrangian transport velocity

Let us define

w := −J>u = −u · ∇xA . (2.53)

Then we have

∂tx = 0 , (2.54)

∂tA = w , (2.55)

divaw = 0 , (2.56)

∂t = Dt + w · ∇a . (2.57)

This is completely analogous to

DtA = 0 , (2.58)

Dtx = u , (2.59)

divx u = 0 , (2.60)

Dt = ∂t + u · ∇x . (2.61)

So if we interchange the roles of x and A, and of the derivatives (∂t,∇x) and (Dt,∇a),

then w takes the role of u.

It seems worthwhile to investigate this analogy more in the future. For now, let us

conclude with the following observation.

Proposition 2.1.15. If −ζ is an Eulerian vector potential for ∂tu, then Jζ is a
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Lagrangian vector potential for Dtw.

Proof. As shown in §2.1.3, we have

Dtw = −J−>∂tu . (2.62)

It follows from Proposition 2.1.7 that if ζ is such that

∂tu = curlx(−ζ) , (2.63)

then

Dtw = curla(Jζ) . (2.64)

2.2 Two special types of vector fields

We consider two special types of vector fields with respect to incompressible fluids.

The first type satisfies

Dtw − (∇xu)>w = 0 . (2.65)

The streamlines of such vector fields are transported by the fluid. Remarkably, the

vorticity ω = curlx u is such a vector field. In fact, many of the properties attributed

to the vorticity hold for any such vector field.

The second type satisfies

Dtv + (∇xu)v = 0 . (2.66)

A typical example would be the gradient ∇xf of a scalar f transported by the fluid,

Dtf = 0. But there are many more. For example, for the incompressible Euler
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equations, if we define a scalar q by Dtq = p − 1
2
|u|2 with arbitrary smooth initial

data, then v = u+∇xq is a vector field of the second type. See §2.3.2.

After writing this chapter, we discovered some more relevant prior literature on

these ideas. The singling out of these two special types of vector fields occurs in the

English literature at least as early as 1983 in Kuz’min [73]. Kuz’min in turn credits a

1982 paper (in Russian) by Moiseev, Sagdeev, Tur, and Yanovsky [82].

Beyond our exposition, we recommend in particular Tur and Yanovsky [112]. They

give a nice geometric characterization, showing for R3 that vector fields of the first

type correspond to “frozen-in” 2-forms; vector fields of the second type correspond to

“frozen-in” 1-forms; and scalars transported by the fluid correspond to “frozen-in” 0-

or 3-forms. (For compressible fluids, there is a distinction between the 0- and 3-form

cases.) Using this unified differential form description, they straight-forwardly show

that if α, β are “frozen-in” forms, then so are dα and α ∧ β. This generalizes, for

example, Propositions 2.2.6 and 2.2.4 below.

2.2.1 Basic properties

The following equivalent definitions of vector fields of the first type are fairly standard—

see for example §1.6 in Majda and Bertozzi [79]. For some geometric observations

related to such vector fields that we will not discuss here, see also Chae, Constantin,

and Wu [19].

Proposition 2.2.1 (Equivalent definitions of vector fields of the first type). The

following are equivalent:

(i) Dtw − (∇xu)>w = 0 ,

(ii) Dt(J
−>w) = 0 ,

(iii) w(x, t) = J>(x, t)(w0 ◦ A) where w0(a) := w(a, 0) ,
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(iv) [Dt, w · ∇x] = 0 .

Proof. For (i) ⇒(ii), use DtJ
−> = −J−>(∇xu)> to compute

Dt(J
−>w) = (DtJ

−>)w + J−>(Dtw) = −J−>(∇xu)>w + J−>(∇xu)>w = 0 . (2.67)

For (ii) ⇒(i), use DtJ
> = (∇xu)>J> to compute

Dtw = Dt(J
>J−>w) = (DtJ

>)(J−>w) = (∇xu)>w . (2.68)

For (ii) ⇒ (iii), integrate along particle trajectories to get

J−>(X(a, t), t)w(X(a, t), t) = w0(X(a, t)) , (2.69)

and multiply by J−>(X(a, t), t). For (iii) ⇒(ii), multiply by J−>(X(a, t), t) and take

Dt. For (iv) ⇒ (ii), we compute

Dt(J
−>w) = Dt(w · ∇xA) = (w · ∇x)(DtA) = 0 . (2.70)

Finally, for (ii) ⇒ (iv), we compute

Dt(w ·∇x) = Dt(J
−>w ·∇a) = Dt(J

−>w)·∇a+J−>w ·∇aDt = 0+(w ·∇x)Dt . (2.71)

Remark 2.2.2. Definition (iv) is another way of saying the stream lines of w move

with the fluid.

Similar calculations establish the following equivalent definitions of vector fields of

the second type.
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Proposition 2.2.3 (Equivalent definitions of vector fields of the second type). The

following are equivalent:

(i) Dtv + (∇xu)v = 0 ,

(ii) Dt(Jv) = 0 ,

(iii) v(x, t) = J−1(x, t)(v0 ◦ A) where v0(a) := v(a, 0) .

The two types of vector field interact in the following interesting way.

Proposition 2.2.4. If w is a vector field of the first type, and v is a vector field of

the second type, then

Dt(v · w) = 0 . (2.72)

Proof. We compute

Dt(v · w) = (Dtv) · w + v · (Dtw) = −(∇xu)v · w + v · (∇xu)>w (2.73)

= −v · (∇xu)>w + v · (∇xu)>w = 0 . (2.74)

Remark 2.2.5. Unfortunately, we are not aware of any interesting statement about

v × w in three dimensions when v and w are of different type. However, if v and w

are both vector fields of the first (resp. second) type, then v × w is a vector field of

the second (resp. first) type—see Kuz’min [73] or Tur and Yanovsky [112].

Proposition 2.2.6. In three dimensions, let v be a vector field of the second type.

Then w = curlx v is a vector field of the first type.

Proof. By Proposition 2.2.3, v = J−1(v0 ◦ A). By Proposition 2.1.7,

w = curlx v = curlx(J
−1(v0 ◦ A)) = J−> curla(v0 ◦ A) = J−>(w0 ◦ A) . (2.75)
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By Proposition 2.2.1, w is thus a vector field of the first type.

Proposition 2.2.7 (Generalized Cauchy invariants formula). Suppose w = curlx v is

a vector field of the first type. Then

3∑
k=1

∇av
k ×∇ax

k = w0 ◦ A . (2.76)

Proof. Using Proposition 2.1.7, we have

w0 ◦ A = J−> curlx v = curla(Jv) . (2.77)

Switching to indices, we compute

[curla(Jv)]i = εi`j∂a`(Jv)j = εi`j∂a`(x
k
aj
vk) (2.78)

= (εi`jx
k
aja`

)vk + εi`jv
k
a`
xkaj (2.79)

= 0 + [∇av
k ×∇ax

k]i , (2.80)

where we used εi`jx
k
aja`

= 0 due to symmetry considerations under j ↔ `.

Taking w = ω and v = u = Dtx in Proposition 2.2.7, we recover the usual

statement of the Cauchy invariants [55].

Corollary 2.2.8 (Cauchy invariants). For the Euler equations, we have

3∑
k=1

∇au
k ×∇ax

k = ϕ . (2.81)

For vector fields of the first type (in arbitrary dimension), the divergence is

preserved along particle trajectories.

Proposition 2.2.9. For w a vector field of the first type, we have Dt(divxw) = 0.
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Proof. Using Proposition 2.1.6, we compute

Dt(divxw) = Dt(diva(J
−>w)) = diva(Dt(J

−>w)) = 0 . (2.82)

2.2.2 The two-dimensional case

In two dimensions, it turns out a vector field of the second type is simply a π
2

rotation

of a vector field of the first type, and vice versa.

Proposition 2.2.10. Relative to a two-dimensional incompressible fluid, v is a vector

field of the first type if and only if v⊥ is a vector field of the second type.

Proof. Let us write

v =

g
h

 , J =

a b

c d

 , (2.83)

Then

Jv =

a b

c d


g
h

 =

ag + bh

cg + dh

 , (2.84)

while

J−>v⊥ =
1

det J

 d −c

−b a


−h

g

 =

−(cg + dh)

ag + bh

 =
1

det J
(Jv)⊥ . (2.85)

For an incompressible fluid, Dt det J = 0, and so we have Dt(J
−>v⊥) = 0 if and only

if Dt(Jv) = 0.

The simplest examples of vector fields of the first and second type, respectively,

are ∇⊥x and ∇x of a scalar carried by the fluid.
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Proposition 2.2.11. Suppose θ is a scalar carried by the fluid,

Dtθ = 0 . (2.86)

Then ∇⊥x θ is a vector field of the first type and ∇xθ is a vector field of the second type.

Proof. Recalling the commutator [∇x, Dt] = (∇xu)∇x, we have

Dt(∇xθ) + (∇xu)(∇xθ) = 0 . (2.87)

So ∇xθ is a vector field of the second type. By Proposition 2.2.10, it follows that ∇⊥x θ

is a vector field of the first type.

2.2.3 Evolution of determinants

Lemma 2.2.12. Let u, v, w ∈ R3 and A ∈ R3×3. Then

det(Au, v, w) + det(u,Av, w) + det(u, v, Aw) = (TrA) det(u, v, w) . (2.88)

Proof. We compute

det(Au, v, w) + det(u,Av, w) + det(u, v, Aw)

= εijkAi`(u
`vjwk + v`wjuk + w`ujvk)

(2.89)

=
1

2
Ai`εijk(u

`vjwk + v`wjuk + w`ujvk

− u`vkwj − v`wkuj − w`ukvj)
(2.90)

=
1

2
Ai`εijkε`jk det(u, v, w) (2.91)

=
1

2
Ai`(2δi`) det(u, v, w) (2.92)

= (TrA) det(u, v, w) , (2.93)
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where for the second line we used the skew-symmetry in j ↔ k.

Remark 2.2.13. More generally, let v1, . . . , vn be n-dimensional vectors and A an n×n

matrix over any field. Then

n∑
i=1

det(v1, . . . , Avi, . . . , vn) = (TrA) det(v1, . . . , vn) . (2.94)

One can prove this in basically the same manner as above, but it is cumbersome to

do so without introducing additional notation. We were unable to find a published

reference for this lemma, but found an alternate and much more elegant proof in an

online forum [83]. This proof employs the uniqueness (up to a scalar multiple) of

multilinear alternating tensors—see, e.g., Theorem 2 in §5.3 of Hoffman and Kunze [64].

Define DA(v1, . . . , vn) to be the left-hand side in (2.94). Clearly, DA is a multilinear

alternating tensor and hence

DA(V ) = (detV )DA(I) = (detV )(TrA) . (2.95)

Corollary 2.2.14. Let v, ω be vectors and N a matrix such that

Dtω −N>ω = 0 , (2.96)

Dtv +Nv = 0 , (2.97)

TrN = 0 . (2.98)

Then

Dt det(ω, α, β) = det(ω,Dtα−N>α, β) + det(ω, α,Dtβ −N>β) , (2.99)

Dt det(v, α, β) = det(v,Dtα +Nα, β) + det(v, α,Dtβ +Nβ) . (2.100)
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Proof. With the help of Lemma 2.2.12, we compute

Dt det(ω, α, β) = det(N>ω, α, β) + det(ω,Dtα, β) + det(ω, α,Dtβ) (2.101)

= −
(

det(ω,N>α, β) + det(ω, α,N>β)
)

+ det(ω,Dtα, β) + det(ω, α,Dtβ)

(2.102)

= det(ω,Dtα−N>α, β) + det(ω, α,Dtβ −N>β) . (2.103)

A similar calculation holds for v.

Remark 2.2.15. In particular, if α, β, γ are either all vectors of the first type or all

vectors of the second type, then we have

Dt det(α, β, γ) = 0 . (2.104)

2.2.4 On some determinants in the Euler and Navier-Stokes

equations in R3

Via a simple change of gauge, we can rewrite the Navier-Stokes equations in R3 in the

form

∂tu− ν∆xu+∇xp+ = u× ω , (2.105)

where

p+ := p+
1

2
|u|2 . (2.106)

Written in this form, it is easy to see that determinants of the form det(u, ω, v) for

some vector field v are of interest.
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Proposition 2.2.16. Solutions of the Navier-Stokes equations satisfy

||∇xp+||2L2 =

∫
R3

det(u, ω,∇xp+) dx , (2.107)

ν

2

d

dt
||∇u||2L2 + ||∂tu||2L2 =

∫
R3

det(u, ω, ∂tu) dx , (2.108)

1

2

d

dt
||∇u||2L2 + ν||∆u||2L2 =

∫
R3

det(u, ω,−∆u) dx . (2.109)

Proof. Since divx u = 0, it follows from (2.105) that

∂tu− ν∆xu = Px(u× ω) , (2.110)

∇xp+ = P⊥x (u× ω) , (2.111)

where Px and P⊥x denote the Leray projectors onto divergence-free and curl-free vector

fields, respectively. Taking the L2 inner product of (2.111) with ∇xp+ gives

||∇xp+||2L2 = 〈∇xp+,P⊥x (u× ω)〉 = 〈P⊥x∇xp+, u× ω〉 (2.112)

= 〈∇xp+, u× ω〉 =

∫
R3

det(u, ω,∇xp+) . (2.113)

The other two equations are similarly obtained by taking the inner product of (2.110)

with ∂tu and −∆u, respectively.

Simply setting ν = 0 in the above, we get the following analog for the Euler

equations.

Proposition 2.2.17. Solutions of the Euler equations satisfy

||∇xp+||2L2 =

∫
R3

det(u, ω,∇xp+) dx , (2.114)

||∂tu||2L2 =

∫
R3

det(u, ω, ∂tu) dx , (2.115)

1

2

d

dt
||∇u||2L2 =

∫
R3

det(u, ω,−∆u) dx . (2.116)
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In particular, we point out that the integrals of det(u, ω,∇xp+) and det(u, ω, ∂tu)

are nonnegative.

2.3 Two special gauge choices

The basic idea here is to look at the quantity v = u +∇xq for some scalar q of our

choosing. (Buttke [11] calls any such quantity v a velicity.) Since u is divergence-free,

we can recover u from v via Leray projection, u = Pxv. Since Px is a singular integral

operator, all the usual norms of u are controlled by the corresponding norms of

v. Depending on the choice of q, it is possible to give many other self-contained

formulations of incompressible fluid flow. In this section, we will talk a little about

two particular choices of q that have interesting properties.

It should be noted that these ideas are far from new—we include this material here

primarily as an application of the material in §2.2. Both gauge choices can be termed

folklore. Furthermore, all of the results in §2.3.2 already appear in Buttke [11]. See

also Buttke and Chorin [10], where the name “magnetization variable” is introduced,

and §1.4 in Chorin [21]. Earlier, Kuz’min [73] and Oseledets [89] already used this

gauge to give a Hamiltonian formulation of the Euler equation. Somewhat related

is also Constantin’s Eulerian-Lagrangian approach for the Euler and Navier-Stokes

equations [25, 26]. Finally, another special choice of gauge, not discussed here, is

found in the works of E and Liu [46, 47]. It consists in taking (∂t − ν∆)q = p, and

is shown to be useful in overcoming difficulties of specifying boundary conditions in

numerical simulations. For a more extensive literature survey we refer to Russo and

Smereka [102], who refer to the gauge choices as impulse formulations of the Euler

equations.
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2.3.1 Eulerian variable v+

If we define q+ by 
∂tq+ = p+

1

2
|u|2 ,

q+(x, 0) = 0 ,

(2.117)

and define v+ by

v+ = u+∇xq+ , (2.118)

then we have

∂tv+ + ω × u = 0 . (2.119)

Thus, we may rewrite the incompressible Euler equations as


∂tv+ = Pxv+ × curlx v+ ,

v+(x, 0) = u0(x) ,

u = Pxv+ .

(2.120)

This formulation makes it particularly easy to prove a sort of Fourier version of

the Beale-Kato-Majda criterion [8].

Proposition 2.3.1. Solutions to the 3d Euler equations with smooth initial data are

smooth on [0, T ] if ∫ T

0

||ω̂(·, t)||L1
ξ

dt <∞ . (2.121)

Sketch of proof. Note that, in Fourier space,

|û(ξ, t)| ≤ | ̂(u+∇xq)(ξ, t)| (2.122)

for any q. Thus, from

∂tv+ = u× ω , (2.123)
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we easily derive by a convolution inequality in Fourier space and Gronwall’s inequality

that

||v+(·, t)|| ≤ e
C

∫ t
0 ||ω(ξ,t)||

L1
ξ

dt
||v+(·, 0)|| , (2.124)

where || · || is, for example, any Besov norm of v+. Since ||u|| ≤ ||v+||, it follows that

||u(·, t)|| remains finite as long as (2.121) holds.

Remark 2.3.2. Of course, ||f ||L∞x ≤ C||f̂ ||L1
ξ

holds, so the Beale-Kato-Majda criterion

is better than this. As observed by Kozono and Taniuchi [71], it even suffices to

just control ||ω||L1
t (BMOx). For a very nice explanation of this observation using the

Fefferman-Stein decomposition of BMO, we recommend Ohkitani [85].

2.3.2 Magnetization variable v−

If we define q− by 
Dtq− = p− 1

2
|u|2 ,

q−(x, 0) = 0 ,

(2.125)

and set

v− = u+∇xq− , (2.126)

then we have

Dtv− + (∇xu)v− = 0 . (2.127)

So v− is a vector field of the second type and so satisfies the many properties described

in §2.2. For example, we have

Dt(v− · ω) = 0 , (2.128)

and

v− = J−1ψ , u = Px(J−1ψ) , (2.129)
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where ψ is the initial velocity field transported by the fluid,

ψ(x, t) = u0(A(x, t), t) . (2.130)

The formula u = Px(J−1ψ) can be viewed as a nonlocal velocity analog of the Cauchy

vorticity formula ω = J>ϕ, or as a generalization of the Clebsch variable representation

for the velocity—see Constantin [25].

Finally, we mention that if the vorticity is initially compactly supported, then it

is possibly to choose initial data q0(x, 0) such that v− is compactly supported for all

time—see Buttke [11].

2.4 On “local” versions of some nonlocal formulas

In incompressible fluids, a number of nonlocal relations exist between quantities of

interest. For example, in R3, the velocity is determined by the vorticity through the

Biot-Savart law:

u(x, t) = − 1

4π

∫
R3

(x− y)× ω(y, t)

|x− y|3
dy . (2.131)

Another example is that, for the Euler equations, ∂tu = −P(u · ∇u) is the Leray

projection of −u · ∇u onto the space of divergence-free vector fields. (We review the

derivation of formulas like (2.131) in §§2.4.1–2.4.4.)

In Rn and Tn, these nonlocal relations are most easily analyzed in Fourier space.

For example, the Biot-Savart law (2.131) is simply

û(ξ, t) =
iξ × ω̂(ξ, t)

|ξ|2
. (ξ 6= 0) (2.132)

(For ξ = 0, note that one usually restricts to studying mean-zero vorticity and velocity:

û(0, t) = ω̂(0, t) = 0.) However, the physical-space representation is better suited to,

for example, proving bounds in Hölder spaces or maximum principles.
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In bounded domains, as a substitute for the Fourier basis, one may use the

eigenfunctions of the Stokes operator—see Constantin and Foias [31]—but this is less

explicit. Similarly, physical-space formulas like (2.131) are not readily available, since

the Green’s function for the bounded domain may be far more complicated or not

known explicitly.

As an alternative, inspired by Constantin’s local pressure formula [22] (see Propo-

sition 2.4.9 below), we prove in §§2.4.5–2.4.9 a number of “local” formulas like the

following (see Proposition 2.4.6 below):

u(x, t)−−
∫
Sr(x)

u(y, t) dS(y) = − 1

4π

∫
Br(x)

(x− y)× (ω(y, t)− ωc)
|x− y|3

dy , (2.133)

where r must be less than the distance of x to the boundary of the domain. We are free

to choose ωc = ωc(x, t) , and choices like ωc = 0, ωc = ω(x, t), and ωc = −
∫
Br(x)

ω(z, t) dz

could all be useful, depending on the sort of estimates being proved. (For an example

applying a “local” pressure formula, see the proof in Constantin [22] that if the velocity

is Cα, then the pressure is C2α or Lipschitz.)

The formula is local in the sense that only knowledge of ω in an arbitrarily small

neighborhood of x is required to determine the left-hand side of (2.133). However, we

put “local” in quotes since the left-hand side is not u(x, t), but rather the difference

between u(x, t) and a spherical average of u around x. We remark, however, that this

is not a huge disadvantage for many purposes: The spherical average is easily replaced

by a volume average over Br(x), and the volume average is bounded if u ∈ Lp for some

p ∈ [1,∞]. Alternatively, we could simply prove estimates in terms of Campanato

seminorms for a domain Ω ⊂ Rn:

[u]p,λ := sup
x∈Ω,0<r<diam(Ω)

(
1

rλ

∫
Br(x)∩Ω

|u(y)− ux,r|p dy

)1/p

, (2.134)
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where

ux,r := −
∫
Br(x)∩Ω

u(y) dy , (2.135)

and 1 ≤ p ≤ ∞, 0 ≤ λ ≤ n + p. These seminorms are equivalent to the BMO

seminorm for λ = n and to the C0,α Hölder seminorms, with α = (λ − n)/p, for

n < λ ≤ n+ p. For more on Morrey-Campanato theory, see for example Chapter III

in Giaquinta [58].

2.4.1 The Newton potential for R3 and its distributional deri-

vatives

Recall that the Newton potential for R3 is

Φ(x) =
1

4π|x|
. (2.136)

That is, Φ satisfies −∆Φ(x) = δ(x) in the sense of distributions. The following

computations are standard (see, e.g., §2.4.2 in Majda and Bertozzi [79] or the classic

books of Stein [108,109] for the general theory of singular integral operators):

∇Φ(x) = − 1

4π

x

|x|3
, (2.137)

and

∂2
xixj

Φ(x) =
1

4π
p. v.

σij(x)

|x|3
− 1

3
δijδ(x) , (2.138)

where

σ(x) = 3x̂⊗ x̂− I , (2.139)

or, written out explicitly,

σij(x) = 3
xixj
|x|2
− δij . (2.140)
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As a sanity check, note that since Tr σ = 0, we indeed recover −∆Φ = δ(x) from the

formula for ∂2
xixj

Φ(x).

2.4.2 u as a singular integral operator of ω ⊗ x

Recalling the identity −∆ = curl curl for divergence-free vector fields, we see that

there is a differential relation

u = ∇× (−∆)−1ω (2.141)

between the velocity u and the vorticity ω = curlu. Since (−∆)−1ω = Φ ∗ ω, we

obtain the formula

u = ∇× (Φ ∗ ω) = ∇Φ
×∗ ω . (2.142)

Written out explicitly, this says

u(x, t) = − 1

4π

∫
R3

(x− y)× ω(y, t)

|x− y|3
dy , (2.143)

and is commonly referred to as the Biot-Savart law in the fluid mechanics literature.

So far this is all standard material. See, for example, §2.4 in the book of Majda and

Bertozzi [79], but beware of sign errors. (Our sign in (2.143) is correct. Consider, for

example, ω(x1, x2, x3) = δ(x1)δ(x2)e3, i.e., an infinite constant-strength vortex line in

the +e3 direction. By the right-hand rule, this should generate a velocity field in the

eθ direction. Indeed, equation (2.143) yields u(x, t) = 1

2π
√
x21+x22

eθ , as expected.)

Note that ω and u are at different levels of regularity, ω being a derivative of u.

To get quantities at a comparable level, we can look at u and ω ⊗ x. Indeed, u may

be written as a singular integral operator of ω ⊗ x, as we now show.
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Proposition 2.4.1. We have

u(x, t) +
1

3
ω(x, t)× x =

1

4π
p. v.

∫
R3

y · σ(x− y)

|x− y|3
× ω(y, t) dy , (2.144)

u(x, t) =
1

4π
p. v.

∫
R3

(y − x) · σ(x− y)

|x− y|3
× (ω(y, t)− ω(x, t)) dy .

(2.145)

Proof. First, we remark that since
∫
R3 ∇Φ dx = 0, we may insert a vector ωc indepen-

dent of y in the above:

u = ∇× (Φ ∗ ω) = ∇Φ
×∗ (ω − ωc) . (2.146)

Taking for example ωc = ω(x, t), we get the formula:

u(x, t) = − 1

4π

∫
R3

(x− y)× (ω(y, t)− ω(x, t))

|x− y|3
dy . (2.147)

Furthermore, since divω = 0, we have

ω − ωc = div((ω − ωc)⊗ (x− xc)) (2.148)

for any vectors ωc, xc independent of y. Thus, we may compute

u = ∇Φ
×∗ div((ω − ωc)⊗ (x− xc)) (2.149)

= ∇∇Φ
•×∗ ((ω − ωc)⊗ (x− xc)) (2.150)

=
1

4π
p. v.

σ(x)

|x|3
•×∗ ((ω − ωc)⊗ (x− xc))−

1

3
(ω − ωc)× (x− xc) . (2.151)

Taking ωc = xc = 0 and ωc = ω(x, t), xc = x, respectively, gives the two equations in

the statement of the proposition.
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2.4.3 Pressure formula

Proposition 2.4.2. We have

p(x, t) +
1

3
|u(x, t)|2 =

1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
: u(y)⊗ u(y) dy , (2.152)

p(x, t) =
1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
: (u(y)− u(x))⊗ (u(y)− u(x)) dy .

(2.153)

Proof. From −∆p = div div(u⊗ u) = div div((u− uc)⊗ (u− uc)), we have

p = Φ ∗ div div((u− uc)⊗ (u− uc)) (2.154)

= ∇∇Φ
••
∗ ((u− uc)⊗ (u− uc)) (2.155)

=
1

4π
p. v.

σ(x)

|x|3
••
∗ ((u− uc)⊗ (u− uc))−

1

3
|u− uc|2 . (2.156)

Now take uc = 0 and uc = u(x, t), respectively, to get the two equations in the

statement of the proposition.

2.4.4 Formulas for Leray projectors

Proposition 2.4.3. Suppose v = u+∇q with u divergence-free. Then

∇q(x) = P⊥v(x) =
1

3
v(x)− 1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
· v(y) dy , (2.157)

u(x) = Pv(x) =
2

3
v(x) +

1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
· v(y) dy . (2.158)

Alternatively,

∇q(x) = P⊥v(x) = − 1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
· (v(y)− v(x)) dy , (2.159)

u(x) = Pv(x) =
1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
· (v(y)− v(x)) dy . (2.160)
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Proof. From div v = div u+ ∆q = ∆q, we get

q = −(−∆)−1 div v = −(−∆)−1 div(v − vc) , (2.161)

and hence

∇q = −∇Φ ∗ div(v − vc) = −∇∇Φ
•
∗ (v − vc) (2.162)

= − 1

4π
p. v.

σ(x)

|x|3
•
∗ (v − vc) +

1

3
(v − vc) . (2.163)

The formula for u follows from this using u = v −∇q. The two variants are obtained

by choosing vc = 0 and vc = v(x), respectively.

Corollary 2.4.4. For the Euler equations, we have

∂tu(x) +
2

3
(u · ∇u)(x) =

1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
· (u · ∇u)(y) dy , (2.164)

∂tu(x) =
1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
·
(
(u · ∇u)(y)− (u · ∇u)(x)

)
dy ,

(2.165)

∂tu(x) +
2

3
(ω × u)(x) =

1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
· (ω × u)(y) dy , (2.166)

∂tu(x) =
1

4π
p. v.

∫
R3

σ(x− y)

|x− y|3
·
(
(ω × u)(y)− (ω × u)(x)

)
dy .

(2.167)

Proof. Apply Proposition 2.4.3 to the formulas

−u · ∇u = ∂tu+∇p , (2.168)

−ω × u = ∂tu+∇(p+
1

2
|u|2) . (2.169)

Remark 2.4.5. Of course, we can write down similar formulas for ∇p.
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2.4.5 Nonlocal formulas over a bounded domain

Let Φ denote the Newton potential in R3, and let U ⊂ R3 be a bounded domain

containing a point x. Then by Green’s formula we have

u(x) =

∫
U

Φ(x− y)(−∆u)(y) dy +

∫
∂U

[
Φ(x− y)∂nu(y) + u(y)∂nΦ(x− y)

]
dS(y) .

(2.170)

It is common at this point to eliminate one of the two boundary terms by replacing

Φ(y − x) by a Dirichlet or Neumann Green function GD(x, y) or GN(x, y)—see, for

example, §2.2.4 in Evans [51] and §3.7 in DiBenedetto [41]. However, we will just keep

Φ as is for the moment. For the choice U = Br(x) that we will focus on here, the

calculations turn out simpler this way. For other choices, however, the calculations

should be redone using the appropriate GD or GN .

In the following, we will need these integration-by-parts formulas for vectors v and

tensors T :

∫
U

Φ(x− y) div T (y) dy =

∫
U

T (y) · ∇Φ(x− y) dy +

∫
∂U

Φ(x− y)n(y) · T (y) dS(y) ,

(2.171)∫
U

Φ(x− y) curl v(y) dy =

∫
U

∇Φ(x− y)× v(y) dy +

∫
∂U

Φ(x− y)n(y)× v(y) dS(y) ,

(2.172)∫
U

Φ(x− y)∇T (y) dy =

∫
U

(∇Φ(x− y))⊗ T (y) dy

+

∫
∂U

Φ(x− y)n(y)⊗ T (y) dS(y) .

(2.173)

To make calculations more legible, we will frequently write formulas like the above in
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abbreviated notation as

Φ ∗U div T = ∇Φ
•
∗U T + Φ ∗∂U (n · T ) , (2.174)

Φ ∗U curl v = ∇Φ
×∗U v + Φ ∗∂U (n× v) , (2.175)

Φ ∗U ∇T = ∇Φ
⊗∗U T + Φ ∗∂U (n⊗ T ) . (2.176)

2.4.6 Local Biot-Savart formula

Plugging −∆u = curl(ω − ωc) into (2.170) and using (2.172), we find

u(x) =

∫
U

Φ(x− y) curl(ω(y)− ωc) dy

+

∫
∂U

[
Φ(x− y)∂nu(y) + u(y)∂nΦ(x− y)

]
dS(y)

(2.177)

=

∫
U

∇Φ(x− y)× (ω(y)− ωc) dy +

∫
∂U

u(y)∂nΦ(x− y) dS(y)

+

∫
∂U

[
Φ(x− y)(∂nu(y) + n(y)× (ω(y)− ωc))

]
dS(y) .

(2.178)

Let’s specialize now to U = Br(x). Then Φ(x− y) is constant on ∂U = Sr(x), giving

rise to a nice cancellation of boundary terms:

∫
Sr

∂nu dS(y) =

∫
Br

∆u dy = −
∫
Br

curl(ω − ωc) dy = −
∫
Sr

n× (ω − ωc) dS(y) .

(2.179)

Since ∂nΦ(x− y) = 1
4πr2

= 1
|Sr| for y ∈ Sr(x), the remaining boundary term is just the

average of u over the boundary,

∫
Sr

u(y)∂nΦ(x− y) dS(y) = −
∫
Sr

u(y) dS(y) . (2.180)

Putting this all together, we have the following proposition.
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Proposition 2.4.6. We have

u(x, t)−−
∫
Sr(x)

u(y, t) dS(y) = − 1

4π

∫
Br(x)

(x− y)× (ω(y, t)− ωc)
|x− y|3

dy . (2.181)

Remark 2.4.7. As in Proposition 2.4.1, we could also again use ω = div(ω ⊗ x) to get

a formula for u as a singular integral operator of ω ⊗ x.

Remark 2.4.8. Using the formula (see §A.4)

−
∫
Br(x)

u(y) dy = dr1−d−
∫ r

0

ρd−1−
∫
Sρ(x)

u(y) dS(y) dρ , (Br(x) ⊂ Rd) (2.182)

we can get the following volume-averaged version of Proposition 2.4.6:

u(x, t)−−
∫
Br(x)

u(y, t) dy = − 3

4πr2
−
∫ r

0

ρ2

∫
Bρ(x)

(x− y)× (ω(y, t)− ωc)
|x− y|3

dy dρ (2.183)

= − 1

4π
−
∫
Br(x)

∫
B|z|(x)

(x− y)× (ω(y, t)− ωc)
|x− y|3

dy dz . (2.184)

2.4.7 Local pressure formula

Proposition 2.4.9 (Constantin (2014) [22]). We have

p(x, t) +
1

3
|u(x, t)− uc|2 =

1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
: (u(y, t)− uc)⊗2 dy (2.185)

+−
∫
Sr(x)

(
p(y, t) + |n(y) · (u(y, t)− uc)|2

)
dS(y) . (2.186)

In particular, taking uc = u(x, t), we have

p(x, t)−−
∫
Sr(x)

p(y, t) dS(y) =
1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
: (u(y, t)− u(x, t))⊗2 dy .

(2.187)

Proof. Let us set M = (u− uc)⊗ (u− uc), and recall that we have −∆p = div divM .

Using Green’s formula (2.170) and integrating by parts twice according to (2.171), we
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find

p = ∇∇Φ
••
∗U M + Φ ∗∂U (∂np+ n · divM) + ∂nΦ ∗∂U p+∇Φ

•
∗∂U (n ·M) . (2.188)

Observe that

∂np+ n · divM = n · div(pI + u⊗ u) = −n · ∂tu . (2.189)

Let us fix now U = Br(x). Then Φ(x− y) = 1
4πr

is constant on Sr(x), and so we have

Φ∗Sr(x) (∂np+n ·divM) = − 1

4πr

∫
Sr(x)

(n ·∂tu) dS(y) = − 1

4πr

∫
Br(x)

div(∂tu) dy = 0 .

(2.190)

Similarly, since ∂nΦ(x− y) = 1
|Sr| on Sr(x), we have

(∂nΦ ∗Sr(x) p)(x) = −
∫
Sr(x)

p(y) dS(y) . (2.191)

Finally, we compute (noting that n(y) = y−x
|y−x| and |y − x| = r)

(
∇Φ

•
∗Sr(x) (n ·M)

)
(x) = −

∫
Sr(x)

x− y
4π|x− y|3

· (n ·M) dS(y) (2.192)

= −
∫
Sr(x)

n ·M · n dS(y) (2.193)

= −
∫
Sr(x)

∣∣n · (u− uc)∣∣2 dS(y) . (2.194)

Putting this all together, we get

p+
1

3
|u−uc|2 =

1

4π
p. v.

σ(x)

|x|3
••
∗Br (u−uc)⊗(u−uc)+−

∫
Sr

(
p+ |n · (u− uc)|2

)
. (2.195)

It turns out the formula becomes nicer if we use volume averages over Br instead

of surface averages over Sr, as we will show in the remainder of this section.
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Lemma 2.4.10. If div v = 0, then

∫
Br(x)

(y − x) · v(y) dy = 0 . (2.196)

Proof. First observe that

∫
Sρ(x)

(y−x)·v(y) dS(y) = ρ

∫
Sρ(x)

n(y)·v(y) dS(y) = ρ

∫
Bρ(x)

div v(y) dy = 0 (2.197)

for any ρ > 0. Using the spherical coarea formula, we thus have

∫
Br(x)

(y − x) · v(y) dy =

∫ r

0

∫
Sρ(x)

(y − x) · v(y) dS(y) dρ = 0 . (2.198)

Remark 2.4.11. In fact, if div v = 0, we have

∫
Br(x)

F (|y − x|)(y − x) · v(y) dy = 0 (2.199)

for any nice enough F : R≥0 → R. But we will not need this more general formula

here.

Corollary 2.4.12. For the Euler equations, we have

−
∫
Br(x)

p−−
∫
Sr(x)

p = −
∫
Sr(x)

|n(y) · (u(y, t)− uc)|2 −
1

3
−
∫
Br(x)

|u(y, t)− uc|2 dy . (2.200)

Proof. Taking F (ρ) = 1 and v = ∂tu = − div(pI + (u− uc)⊗2) in Lemma 2.4.10, we
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find

0 = −
∫
Br(x)

(y − x) · div(pI + (u− uc)⊗2)(y) dy (2.201)

=

∫
Br(x)

I : (pI + (u− uc)⊗2) dy −
∫
Sr(x)

n(y)⊗ (y − x) : (pI + (u− uc)⊗2) dS(y)

(2.202)

=

∫
Br(x)

(3p+ |u− uc|2) dy − r
∫
Sr(x)

(p+ |n · (u− uc)|2) dS(y) , (2.203)

where we integrated by parts to obtain the second equality, and we used y− x = rn(y)

and |n(y)|2 = 1 to obtain the third equality. Dividing by |Sr|r and rearranging gives

the statement of the corollary.

Combining Proposition 2.4.9 and Corollary 2.4.12, we get the following volume-

averaged version of the local pressure formula.

Corollary 2.4.13. We have

p(x, t) +
1

3
|u(x, t)− uc|2 −−

∫
Br(x)

(
p(y, t)− 1

3
|u(y, t)− uc|2

)
dy

=
1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
: (u(y, t)− uc)⊗2 dy .

(2.204)

Remark 2.4.14. The Euler equation can be written as

∂tu+ divS +∇q = 0 , (2.205)

where

S = (u− uc)⊗ (u− uc)−
1

3
|u− uc|2I , (2.206)

q = p+
1

3
|u− uc|2 . (2.207)

This is not, in fact, an unusual way to write the Euler equations. The advantage is
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that S is now a traceless, symmetric matrix. With uc = 0, this is also the form used

by De Lellis and Székelyhidi in their seminal paper [37].

Since Tr σ = 0, we have σ : (u− uc)⊗2 = σ : S, and so Corollary 2.4.13 allows us

to write the relation between q and S as simply

q(x, t)−−
∫
Br(x)

q(y, t) dy =
1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
: S(y, t) dy . (2.208)

Remark 2.4.15. Everything in this section holds for the Navier-Stokes equations as

well, since we used only that u and ∇p+ u · ∇u are divergence-free (and hence that

−∆p = div div(u⊗ u)).

2.4.8 Local formulas for Leray projectors

Proposition 2.4.16. Suppose v = u+∇q with u divergence-free. Then

∇q(x) = P⊥v(x) =
1

3
(v(x)− vc)−

1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
· (v(y)− vc) dy

+−
∫
Sr(x)

(∇q(y)− n(y)
(
n(y) · (v(y)− vc)

)
) dS(y) .

(2.209)

Proof. Since −∆∇q = ∇(−∆)q = −∇ div(v − vc), Green’s formula (2.170) gives

∇q(x) = −Φ ∗U ∇ div(v − vc) + Φ ∗∂U ∂n∇q + ∂nΦ ∗∂U ∇q . (2.210)

Integrating by parts twice using (2.173) and (2.171), we get

∇q(x) = −∇∇Φ
•
∗U (v − vc) + Φ ∗∂U (∂n∇q − n div(v − vc))

+ ∂nΦ ∗∂U ∇q −∇Φ ∗∂U (n · (v − vc)) .
(2.211)
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Specializing to U = Br and using div(v − vc) = ∆q, the first boundary term is

1

4πr

∫
Sr

(n · ∇∇q − n div∇q) dS(y) =
1

4πr

∫
Br

([div,∇]∇q) dy = 0 , (2.212)

where we used that [div,∇] = − curl curl annihilates gradients. For the second and

third boundary terms, we use ∇Φ(x − y) = 1
|Sr|n(y) for y ∈ Sr(x) to see that they

equal

−
∫
Sr(x)

(∇q − n
(
n · (v − vc)

)
) dS(y) . (2.213)

Putting these observations together and expanding ∇∇Φ gives the desired formula.

Remark 2.4.17. As in the case of R3, we can obtain a formula for u = Pv from the

above formula by using u = v −∇q. We write this out for the nicer volume-average

expression in Corollary 2.4.18 below.

As with the local pressure formula, it turns out that replacing surface averages by

volume averages yields a nicer expression. From div u = div(v − vc −∇q) = 0, we get

div(∇u)> = div(∇(v − vc −∇q))> = 0. Using Lemma 2.4.10, we thus have

∫
Br(x)

∇∇q(y) · (y − x) dy =

∫
Br(x)

∇(v(y)− vc) · (y − x) dy . (2.214)

Integrating by parts both sides of the equation, we find

3

∫
Br(x)

∇q(y) dy − r
∫
Sr(x)

∇q(y) dS(y) =

3

∫
Br(x)

(v(y)− vc) dy − r
∫
Sr(x)

n(y)
(
n(y) · (v(y)− vc)

)
dS(y) .

(2.215)

Dividing by |Sr|r and combining the resulting equation with Proposition 2.4.16, we

finally arrive at the following formulas:
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Corollary 2.4.18. Suppose v = u+∇q with u divergence-free. Then

∇q(x)− 1

3
(v(x)− vc)−−

∫
Br(x)

(
∇q(y)− 1

3
(v(y)− vc)

)
dy

= − 1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
· (v(y)− vc) dy ,

(2.216)

u(x)− 2

3
(v(x)− vc)−−

∫
Br(x)

(
u(y)− 2

3
(v(y)− vc)

)
dy

=
1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
· (v(y)− vc) dy .

(2.217)

2.4.9 Local ∇u from ω formula

Proposition 2.4.19. We have

∇u(x)− 2

3
(Ω(x)− Ωc)−−

∫
Sr(x)

(
∇u(y) + n(y)⊗ (n(y)× (ω(y)− ωc)

)
dS(y)

=
1

4π
p. v.

∫
Br(x)

σ(x− y)

|x− y|3
× (ω(y)− ωc) dy .

(2.218)

Here we defined (Ωc)ij = 1
2
εijkω

k
c analogously to the formula relating Ω and ω.

Proof. Using −∆∇u = ∇ curl(ω − ωc), we get by Green’s formula (2.170),

∇u = Φ ∗U ∇ curl(ω − ωc) + Φ ∗∂U (∂n∇u) + ∂nΦ ∗∂U ∇u . (2.219)

Integrating by parts twice using (2.173) and (2.172), this becomes

∇u = ∇∇Φ
×∗U (ω − ωc) + Φ ∗∂U (∂n∇u+ n⊗ curl(ω − ωc))

+ ∂nΦ ∗∂U ∇u+∇Φ
⊗∗∂U (n× (ω − ωc)) .

(2.220)

As before, we specialize to U = Br and use that Φ(y− x) is constant on Sr(x) to show
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that the first boundary term vanishes:

∫
Sr

∂n∇u dS(y) =

∫
Br

∇∆u dy = −
∫
Br

∇ curl(ω − ωc) dy (2.221)

= −
∫
Sr

n(y)⊗ curl(ω − ωc) dS(y) . (2.222)

For the second and third boundary terms, we use ∇Φ(y − x) = 1
|Sr|n(y) on Sr(x) to

compute:

∂nΦ ∗∂U ∇u = −
∫
Sr(x)

∇u(y) dS(y) , (2.223)

∇Φ
⊗∗∂U (n× (ω − ωc)) = −

∫
Sr(x)

n(y)⊗ (n(y)× (ω(y)− ωc)) dS(y) . (2.224)

Finally, we note that

[
−1

3
I× (ω − ωc)

]
ij

= −1

3
δikεjk`(ω−ωc)` = −1

3
εji`(ω−ωc)` =

2

3
(Ω−Ωc)ij . (2.225)

Remark 2.4.20. More generally, we have

[A× ω]ij = Aikεjk`ω
` = 2AikΩjk = −2[AΩ]ij . (2.226)

Written purely in terms of Ω and Ωc, the formula in the proposition is thus

∇u(x)− 2

3
(Ω(x)− Ωc)−−

∫
Sr(x)

(
∇u(y)− 2(n(y)⊗ n(y))(Ω(y)− Ωc)

)
dS(y)

= − 1

4π
p. v.

∫
Br(x)

2σ(x− y)(Ω(y)− Ωc)

|x− y|3
dy .

(2.227)
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2.5 A “Lagrangian” locally compact Abelian group

2.5.1 Motivation

For several fluid-mechanical systems, we can obtain a self-contained Lagrangian

evolution equation of the form2

DtX(a, t) =

∫
Rn

K(X(a, t)−X(b, t))F(X(b, t),∇bX(b, t), ϕ(b)) db , (2.228)

where ϕ(b) depends only on initial data. For example, thanks to the Biot-Savart law

and Dtω = 0, the 2d Euler equation may be written as

DtX(a, t) =
1

2π

∫
R2

(X(a, t)−X(b, t))⊥

|X(a, t)−X(b, t)|2
ω0(b) db . (2.229)

Similarly, using the Biot-Savart law and the Cauchy formula,

ω(X(a, t), t) = (∇aX(a, t))>ω0(a) , (2.230)

the 3d Euler equation may be written as

DtX(a, t) = − 1

4π

∫
R3

X(a, t)−X(b, t)

|X(a, t)−X(b, t)|3
×
[
(∇bX(b, t))>ω0(b)

]
db . (2.231)

(For the Euler equations, this is discussed extensively in §4 of Majda and Bertozzi [79].

Similar formulas hold for the 2d surface quasi-geostrophic, 2d incompressible porous

medium, and 2d Boussinesq equations—see §2 of Constantin, Vicol, and Wu [34].)

The point is that (2.228) looks almost like a convolution. In fact, if we define a

2For this section, we will for obvious reasons write expressions as functions of Lagrangian rather
than Eulerian variables. Recall that we write Dt for the partial time derivative even when working
in Lagrangian variables. See Remark 2.1.2.
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new group operation ⊕ on Rn by3

a⊕ b := A(X(a, t) +X(b, t), t) , (2.232)

then it is exactly a convolution in the locally compact Abelian (LCA) group (Rn,⊕),

DtX(a, t) =

∫
Rn

K(X(a	 b, t))F(X(b, t),∇bX(b, t), ϕ(b)) db . (2.233)

In this section, we will discuss some properties of the LCA group (Rn,⊕), including a

Fourier transform and an Lp convolution inequality.

Good references on locally compact groups are the books by Folland [53], Hewitt

and Ross [61,62], Reiter and Stegeman [96], and Rudin [101].

2.5.2 Haar measure and convolution inequality

Thanks to incompressibility, it turns out the Haar measure for (Rn,⊕) is simply

Lebesgue measure.

Proposition 2.5.1. The Haar measure of (Rn,⊕) is (up to a constant scalar multiple)

just Lebesgue measure da. That is, for any b ∈ Rn and any integrable f , we have

∫
Rn
f(a⊕ b) da =

∫
Rn
f(a) da . (2.234)

Proof. For fixed b, set

c(a) = a⊕ b = A(X(a, t) +X(b, t), t) . (2.235)

Then

∇ac = (∇aX(a, t))∇xA(X(a, t) +X(b, t), t) . (2.236)

3Note that ⊕ depends on t, but for aesthetic reasons we prefer to keep this implicit rather than
writing something like ⊕t.
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Since det∇xA = det∇aX = 1 everywhere, it follows that

dc = | det∇ac| da = da . (2.237)

So the Lebesgue measure da is translation-invariant under ⊕.

As a consequence, we have the following convolution inequality (see, for example,

§20 in Hewitt and Ross [61] or §2.5 in Folland [53]).

Proposition 2.5.2 (Young’s convolution inequality for (Rn,⊕)). Let 1 ≤ p, q, r ≤ ∞

such that 1 + 1
r

= 1
p

+ 1
q

and let f ∈ Lp(Rn), g ∈ Lq(Rn). Then h defined by

h(a) =

∫
Rn
f(a	 b)g(b) db (2.238)

is in Lr(Rn) and the following estimate holds:

||h||Lr(Rn) ≤ ||f ||Lp(Rn)||g||Lq(Rn) . (2.239)

2.5.3 Fourier transform

Lemma 2.5.3. The characters of (Rn,⊕), i.e., the continuous group homomorphisms

(Rn,⊕)→ (T, ·), are

χξ(a) = eiξ·X(a,t) . (ξ ∈ Rn) (2.240)

Proof. Clearly, these are continuous. To see they are group homomorphisms, we

compute

χξ(a⊕ b) = eiξ·X(a⊕b,t) = eiξ·(X(a,t)+X(b,t)) = eiξ·X(a,t)eiξ·X(b,t) = χξ(a)χξ(b) . (2.241)

Conversely, if χ is a continuous group homomorphism (Rn,⊕)→ (T, ·), then χ ◦A(·, t)

is a continuous group homomorphism (Rn,+)→ (T, ·) and hence of the form x 7→ eiξ·x
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for some ξ. Thus, χ = (χ ◦ A) ◦X is of the form a 7→ eiξ·X(a,t) = χξ(a) for some ξ.

Thus, we have the following Fourier transform for (Rn,⊕). Much like the usual

Fourier transform for (Rn,+), it comes with an inversion (i.e., Pontryagin duality)

theorem, Plancherel identity, and Hausdorff-Young inequality. Instead of additive

convolutions, it sends ⊕-convolutions to multiplication. We refer to, e.g., §§4.2–4.3 in

Folland [53] for detailed statements.

Definition 2.5.4. The ⊕-Fourier transform of a function f : Rn → R is

(F⊕f)(ξ) :=

∫
Rn
e−iξ·X(a,t)f(a) da . (2.242)

Remark 2.5.5. The relation to the usual Fourier transform is as follows:

(F⊕f)(ξ) =

∫
Rn
e−iξ·X(a,t)f(a) da =

∫
Rn
e−iξ·xf(A(x, t)) dx (2.243)

= (F(f ◦ A(·, t)))(ξ) . (2.244)

In words, the ⊕-Fourier transform with respect to ⊕ of a function f of Lagrangian

variables is the usual Fourier transform of f as a function of Eulerian coordinates.

Since ⊕ is time-dependent, F⊕ does not commute with Dt. In fact, the commutator

is the Fourier transform of the advection term.

Proposition 2.5.6. For a tensor f(a, t), we have

[Dt,F⊕]f(ξ, t) = −iξ · F⊕[DtX ⊗ f ](ξ, t) = −F [u · ∇x(f ◦ A)](ξ, t) . (2.245)

Proof. We compute

Dt(F⊕f)(ξ, t) =

∫
Rn
e−iξ·X(a,t)

{
Dtf(a, t)− (iξ ·DtX(a, t))f(a, t)

}
da (2.246)

=
[
F⊕(Dtf)

]
(ξ, t)− iξ · F⊕[DtX ⊗ f ](ξ, t) . (2.247)
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Using Remark 2.5.5 and recalling that u = (DtX) ◦ A and divx u = 0, we find

[Dt,F⊕]f(ξ, t) = −iξ · F [(DtX ◦ A)⊗ (f ◦ A)](ξ, t) (2.248)

= −F [divx(u⊗ (f ◦ A))](ξ, t) (2.249)

= −F [u · ∇x(f ◦ A)](ξ, t) . (2.250)

The interaction with spatial derivatives ∇a is also not as straightforward as for

the usual Fourier transform.

Proposition 2.5.7. For a tensor f(a, t), we have

F⊕(∇af)(ξ, t) = iξ · F⊕[K−> ⊗ f ](ξ, t) . (2.251)

Proof. Integrating by parts, we find

F⊕(∇af)(ξ, t) =

∫
Rn
e−iξ·X(a,t)∇af(a, t) da (2.252)

=

∫
Rn
e−iξ·X(a,t)iξ · (∇aX(a, t))> ⊗ f(a, t) da (2.253)

= iξ · F⊕[(∇aX)> ⊗ f ](ξ, t) . (2.254)

(We introduced the notation K = ∇xa and K−1 = ∇aX in §2.1.2.)

Remark 2.5.8. It is clear from Remark 2.5.5 that F⊕ satisfies the usual relationships

with respect to ∇x and ∂t. That is, for a tensor f(a, t), we have

[∂t,F⊕]f = 0 , (2.255)

F⊕(∇xf)(ξ, t) = iξ ⊗ (F⊕f)(ξ, t) . (2.256)
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By ∂t and ∇x we mean the operators on functions of Lagrangian variables, as defined

in §2.1.2. That is, ∇xf(a, t) := (∇x(f ◦ A)) ◦X and ∂tf(a, t) := (∂t(f ◦ A)) ◦X.

Remark 2.5.9. In the other direction, we can also use Remark 2.5.5 to translate

Proposition 2.5.7 into the setting of functions of Eulerian variables. For this, recall

first from §2.1.2 that we define ∇a as an operator on functions of Eulerian variables

via ∇af = (∇a(f ◦X)) ◦ A. Thus, for an Eulerian tensor f(x, t), Proposition 2.5.7

says

F [∇af ](ξ, t) = iξ · F [J> ⊗ f ](ξ, t) . (2.257)

Another way to see this is by means of Proposition 2.1.6. Taking the Fourier transform

of the identity

∇af = divx(J
> ⊗ f) (2.258)

leads directly to (2.257).

2.5.4 Discussion

The availability of an Lp convolution inequality makes it easy to prove a priori bounds

like the following.

Proposition 2.5.10. For the 2d Euler equations, we have

||u||L∞ ≤
1√
2π
||ω0||

1
2

L1||ω0||
1
2
L∞ . (2.259)

Proof. By (2.229), we have

|u(X(a, t), t)| = |DtX(a, t)| =

∣∣∣∣∣ 1

2π

∫
R2

X(b, t)⊥

|X(b, t)|2
ω0(a	 b) db

∣∣∣∣∣ (2.260)

≤
∫
|X(·,t)|<R

1

2π|X(b, t)|
|ω0(a	 b)| db+

∫
|X(·,t)|≥R

1

2π|X(b, t)|
|ω0(a	 b)| db .

(2.261)
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Using the convolution inequality, Proposition 2.5.2, it follows that

||u||L∞ ≤ ||ω0||L∞R +
1

2πR
||ω0||L1 . (2.262)

Taking R =
||ω0||1/2

L1√
2π||ω0||1/2L∞

completes the proof.

To be fair, however, we should point out that this inequality may also be obtained

easily by conventional means. Namely, we could have also started from the Eulerian

convolution

u(x, t) =
1

2π

∫
R2

y⊥

|y|2
ω(x− y, t) dy , (2.263)

and obtained

||u(·, t)||L∞ ≤
1√
2π
||ω(·, t)||

1
2

L1 ||ω(·, t)||
1
2
L∞ (2.264)

by a similar calculation to the above. Finally, since Dtω = 0 in two dimensions and

consequently ||ω(·, t)||Lp = ||ω0||Lp for 1 ≤ p ≤ ∞, we would have arrived at the same

inequality without any need for a ⊕-convolution inequality.

A naive hope when first thinking about this idea was that some methods related

to Hilbert’s fifth problem could be useful. Any merely continuous LCA group is in

fact isomorphic to an analytic LCA group, and there are fascinating tricks used in

step-by-step proving this upgrade in regularity—we recommend the exposition by

Tao [111]. Unfortunately, trying to apply these ideas in our setting ends up merely

telling us what we already know: That the map X(·, t) : (Rn,⊕)→ (Rn,+) gives an

isomorphism of (Rn,⊕) with the analytic group (Rn,+).
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Chapter 3

Orthogonal Invariants

Physically meaningful quantities should be independent of the choice of coordinates.

The incompressible Euler equations are invariant under orthogonal changes of co-

ordinates, and so it might be worthwhile to look at orthogonal invariants of ∇xu.

Equivalently, we may look for orthogonal invariants of the tuple (D,Ω), since the

traceless symmetric matrices and the skew-symmetric matrices are both irreducible

representations of the orthogonal group (as are the isotropic matrices—but for traceless

matrices like ∇xu they are not needed). This chapter is devoted to the study of such

orthogonal invariants.

Mostly, we will be concerned with the algebraic approach of scalar polynomial

orthogonal invariants. We briefly review this theory in §3.1, and we illustrate how

to apply it to the incompressible Euler equations in §§3.2–3.4. In the final section,

§3.5, we discuss an alternate approach based on rotating the reference frame along

a particle trajectory. This allows us to obtain, for example, Lagrangian evolution

equations for the eigenvalues of D and for the vorticity components in the eigenvector

basis of D.

When applying these ideas to the incompressible Euler equations (or other incom-

pressible hydrodynamic systems), the key obstacle is the nonlocality of the pressure
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Hessian. Without any pointwise bounds available for pressure-related invariants,

pointwise Lagrangian analysis of the invariants of ∇xu is ultimately fruitless. In §3.4.5,

this obstacle is overcome by looking instead at spatial integrals of invariants; and

in §3.4.6, it is overcome by working with Vieillefosse’s model of the Euler equations

obtained by simply setting the non-isotropic part of the pressure Hessian to zero. For

turbulent fluids, more sophisticated local models for the pressure Hessian have been

proposed (see, e.g., Chevillard et al. [20]). Conceivably, these techniques could be

fruitfully applied to some such model in the future.

Apart from the Euler equations, we also believe these techniques could be more

useful for the study of other physical systems of partial differential equations, especially

local ones. Working with scalars has the frequent benefit of making cancellations

easier to see. Also, bounds are commonly easier to prove, since some invariants have

a definite sign. This is best illustrated in §3.4.6.

Finally, a brief comment on the novelty of this material: In the literature, various

orthogonal invariants of the Euler equations have been studied on an ad hoc basis, but

to our knowledge there has not been an as systematic attempt as this one to identify

all of them and their evolutions. The applications we give in §§3.4.5 and 3.4.6 are not

new (see Chae [17] and Vieillefosse [113], respectively). However, the proofs are, in

our opinion, improved by using our invariants framework.

3.1 Scalar polynomial orthogonal invariants

For scalar polynomial invariants of m-tuples of matrices under the simultaneous action

of the orthogonal group, there is a well-developed algebraic theory. We will describe

it only in a simple form, with a view towards applications. For more details, we refer

to Procesi [91] and §§1, 2, and 10 in Kraft and Procesi [72].

The basic idea is this. Given an m-tuple of n× n matrices A = (A1, . . . , Am), one
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considers the subring of the ring of polynomials in the components of A1, . . . , Am (let

us denote it R[A]) that is invariant under the diagonal action of the orthogonal group:

R = {p ∈ R[A] | p(A1, . . . , Am) = p(OA1O>, . . . ,OAmO>) for all O ∈ O(n)} .

(3.1)

The First Fundamental Theorem of Invariant Theory for the orthogonal group states

that R is generated by polynomials of the form

TrU1 · · ·Up , (3.2)

where each Ui is equal to Aj or A>j for some j. That is, every scalar (polynomial)

orthogonal invariant of the tuple A can be expressed as a polynomial in traces of

products of the Ai’s and their transposes.

There are a few partial results for how large we need to take p to get a complete set

of generators (p ≤ 2n− 1 suffices) and for the relations satisfied by the generators, but

really it depends a lot on the specific choices of dimension n and number of matrices

m. Indeed, this is still an active area of research—see, e.g., Lopatin [77], D̄oković [87],

and references therein. Most importantly, as proved by Procesi [91], it turns out that

all relations between generators follow from the Cayley-Hamilton Theorem. This is

how in practice we may find a set of generators for any particular system of interest.

We will illustrate this for the 2d and 3d Euler equations in the following sections.

Before doing this, however, let us recall without proof some basic properties of the

trace operator and state the Cayley-Hamilton theorem. (This is, of course, standard

linear algebra material. For more details and proofs see, e.g., §§9–10 in Axler [6] or

§§7–8 in Roman [100]).
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Definition 3.1.1. The trace TrA of an n× n matrix A with entries Aij is

TrA =
n∑
i=1

Aii . (3.3)

Proposition 3.1.2. The trace operator satisfies

Tr(cA+B) = cTrA+ TrB , (linearity) (3.4)

TrA = TrA> , (invariance under transpose) (3.5)

TrA1A2 · · ·An = TrA2 · · ·AnA1 . (invariance under cyclic permutation) (3.6)

Corollary 3.1.3. The trace is independent of the choice of basis: If B is an invertible

matrix, then

TrA1 · · ·An = Tr
[
(BA1B

−1) · · · (BAnB−1)
]
. (3.7)

In particular, the trace is orthogonally invariant: If O is an orthogonal matrix, then

TrA1 · · ·An = Tr
[
(OA1O>) · · · (OAnO>)

]
. (3.8)

Corollary 3.1.4. If A is symmetric and B is skew-symmetric, then

TrAB = TrBA = 0 . (3.9)

Proof. Using invariance under transpose and cyclic invariance:

TrAB = Tr(AB)> = TrB>A> = −TrBA = −TrAB . (3.10)
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Definition 3.1.5. The characteristic polynomial pA of an n× n matrix A is

pA(λ) = det(λIn − A) , (3.11)

where In denotes the n× n identity matrix.

Theorem 3.1.6 (Cayley-Hamilton). If A is an n×n matrix over a commutative ring,

then pA(A) = 0. More explicitly, for n = 2 and n = 3, we have

A2 − (TrA)A+ (detA)I = 0 , (n = 2) (3.12)

A3 − (TrA)A2 +
1

2

(
(TrA)2 − TrA2

)
A− (detA)I = 0 . (n = 3) (3.13)

In practice, it is usually easier to work with the following special case.

Corollary 3.1.7 (Cayley-Hamilton for traceless matrices). For traceless n×n matrices

A, we have

A2 =
1

2
(TrA2)I , (n = 2) (3.14)

A3 =
1

2
(TrA2)A+

1

3
(TrA3)I . (n = 3) (3.15)

Proof. The equations in Theorem 3.1.6 simplify in the case TrA = 0 to

A2 + (detA)I = 0 , (n = 2) (3.16)

A3 − 1

2
(TrA2)A− (detA)I = 0 . (n = 3) (3.17)

Taking the trace of these equations, we find

detA = −1

2
TrA2 , (n = 2) (3.18)

detA =
1

3
TrA3 . (n = 3) (3.19)
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Combining the last two sets of equations yields the corollary.

3.2 Invariants of the incompressible Euler equa-

tions

In this section, we will look at orthogonal invariants of the incompressible Euler system


Dtu+∇xp = 0 ,

divx u = 0 .

(3.20)

Writing N = ∇xu and P = ∇x∇xp, we have



DtN +N2 + P = 0 ,

TrN = 0 ,

TrP = −TrN2 ,

P = P> .

(3.21)

The first equation is obtained by taking ∇x of Dtu + ∇xp = 0, while the second

equation is just a restatement of the incompressibility constraint divx u = 0. The

third equation is obtained by taking the trace of the first equation, and the fourth

equation is clear since P is a Hessian matrix (assuming p ∈ C2).

Remark 3.2.1. Unfortunately, there is no evolution equation for P , but this is still a

closed system, since P is determined nonlocally by the orthogonal invariant TrN2 via

P = ∇x∇x(−∆x)
−1 TrN2 = (Rx ⊗Rx) TrN2 , (3.22)

where Rx denotes the Riesz transform in x. This follows from P = ∇x∇xp and

−∆xp = −TrP = −TrN2.
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As a first simplification, let us define Q to be the traceless part of P , that is,

Q = P − 1

n
(TrP )I = P +

1

n
(TrN2)I . (3.23)

This allows us to use the traceless version of the Cayley-Hamilton theorem, Corol-

lary 3.1.7, and will greatly simplify later calculations. Since TrP = −TrN2 , we can

recover P from N and Q, so there is no loss of information in doing this substitution.

The new system is 
DtN =

1

n
(TrN2)I−N2 −Q ,

TrN = TrQ = 0 ,

Q = Q> .

(3.24)

Next, let us decompose N into symmetric and skew-symmetric parts D and Ω,

respectively. That is,

N = D + Ω , D =
1

2

(
N +N>

)
, Ω =

1

2

(
N −N>

)
. (3.25)

Since TrN = 0 and Ω vanishes on the diagonal, we have TrD = Tr Ω = 0. Taking the

symmetric and skew-symmetric parts of the equation for DtN yields


DtD =

1

n
Tr(D + Ω)2I−D2 − Ω2 −Q ,

DtΩ = −DΩ− ΩD .
(3.26)

In the following, then, we shall study triplets of n×nmatrices (D,Ω, Q) satisfying (3.26)

as well as

TrD = Tr Ω = TrQ = 0 , D = D> , Q = Q> , Ω = −Ω> . (3.27)
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3.3 The two-dimensional case

For the Euler equations in two dimensions, the invariants approach is somewhat

overkill. However, it is useful for illustrating the sorts of calculations involved, as

these become much more complex even for the case of three dimensions.

In two space dimensions, for arbitrary a, b ∈ R , we have by the Cayley-Hamilton

formula (3.14),

(D + aΩ + bQ)2 =
1

2
Tr(D + aΩ + bQ)2I . (3.28)

Expanding both sides gives

D2 + a2Ω2 + b2Q2 + a(DΩ + ΩD) + b(DQ+QD) + ab(ΩQ+QΩ)

=

(
1

2
TrD2 +

1

2
a2 Tr Ω2 +

1

2
b2 TrQ2 + bTrDQ

)
I .

(3.29)

Equating the coefficients of the various monomials in a, b , we find

D2 =
1

2
(TrD2)I , Ω2 =

1

2
(Tr Ω2)I , Q2 =

1

2
(TrQ2)I ,

DQ+QD = (TrDQ)I , DΩ + ΩD = ΩQ+QΩ = 0 .

(3.30)

Using these matrix-level relations, we can find a minimal set of generators for the ring

of orthogonal invariants.

Theorem 3.3.1. The ring of orthogonal invariants for triplets (D,Ω, Q) of traceless

2 × 2 matrices, with D, Q symmetric and Ω skew-symmetric, is generated by the
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following five invariants:

η =
1

2
TrD2 =

1

2
|D|2 , (3.31)

µ = −1

2
Tr Ω2 =

1

2
|Ω|2 =

1

4
ω2 , (3.32)

π1 = TrDQ = TrQD , (3.33)

π2 =
1

2
TrQ2 =

1

2
|Q|2 , (3.34)

π3 = TrDΩQ . (3.35)

These satisfy the relation

π2
3 = 4ηµπ2 − µπ2

1 . (3.36)

Proof. First let us prove that these five invariants are indeed a complete set of

generators. By the First Fundamental Theorem (see §3.1 above), it suffices to show

that each invariant of the form T = TrA1 · · ·Ap, where each Ai is one of D,Ω, or Q,

can be expressed in terms of η, µ, π1, and π2. So let some such invariant T be given.

The proof is by induction on p.

1. If p = 1, then T vanishes since D,Ω, Q are all traceless.

2. If p = 2, then T is one of η, µ, π1, π2 or else vanishes. For if T is not one of

η, µ, π1, π2, then it must be one of TrDΩ = Tr ΩD or TrQΩ = Tr ΩQ. These

vanish by symmetry considerations—see Corollary 3.1.4.

3. If p ≥ 3, then T either vanishes or can be written in terms of π3 and invariants

of the form S = TrB1 · · ·Bq with each Bi equal to one of D,Ω, Q and q < p.

First note that, with the help of the anticommutation relations in (3.30), we

can freely reorder the factors Ai at the expense of possibly changing sign and

adding terms like π1S with S as just described.

If Ai = Aj for some i 6= j, then we can reorder such that j = i+ 1 and then use
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the first line of equations in (3.30) to reduce this remaining term to one of ηS,

µS, or π2S, with S as described.

The only remaining possibility is that p = 3 and A1, A2, A3 is some permutation

of D,Ω, Q. Then we can reorder to the case T = ±TrDΩQ = ±π3.

The relation (3.36) can be proved by applying the Cayley-Hamilton theorem 3.1.6 to

the matrix DΩQ and using reorderings and reductions as in the induction step above.

The two-dimensional case is simple enough, however, that it is more instructive to just

write out the invariants explicitly. Without loss of generality, thanks to orthogonal

conjugation, we may assume D is diagonal. Then the matrices have the explicit form

D =

λ 0

0 −λ

 , Ω =
1

2

 0 ω

−ω 0

 , Q =

p q

q −p

 (3.37)

for some real numbers λ, ω, p, q. The invariants are then found to be

η = λ2 , µ =
1

4
ω2 , π1 = 2λp , π2 = p2 + q2 , π3 = λωq . (3.38)

Using these expressions, it is straightforward to verify relation (3.36). Furthermore, it

is clear that no lower-order relations hold.

Remark 3.3.2. Owing to the relation (3.36), in practice we do not need π3.

Remark 3.3.3. Note that η, µ, π2 are nonnegative, but the signs of π1 and π3 are

indeterminate.

Remark 3.3.4. With the help of (3.30), the evolution equations (3.26) for D and Ω

simplify to

DtD = −Q , DtΩ = 0 . (3.39)
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This gives straight-forwardly

Dtη = −π1 , Dtµ = 0 . (3.40)

So looking at orthogonal invariants has naturally led us to the observation that

vorticity is conserved along Lagrangian particle trajectories. Beyond this, however,

the two-dimensional case is really geometrically too simple for the invariants approach

to be useful. The three-dimensional case discussed next is far more interesting.

Remark 3.3.5. The statement DtΩ = 0 is fully equivalent to the usual statement

Dtω = 0, but the scalar µ = 1
4
ω2 loses sign information about ω. To recover ω, we

should really look at special orthogonal and not just orthogonal invariants. In even

dimensions, the Pfaffian of skew-symmetric matrices is a special orthogonal invariant.

In our case,

(Pf Ω)2 = det Ω =
1

4
ω2 , (3.41)

so we find that 1
2
ω is a special orthogonal invariant. In odd dimensions, the special

orthogonal invariants coincide with the orthogonal ones—see Aslaksen [5].

3.4 The three-dimensional case

As in the two-dimensional case, we begin by using Cayley-Hamilton to derive some

matrix-level identities for D,Ω, Q.

Lemma 3.4.1. For D,Ω, Q traceless 3 × 3 matrices with D, Q symmetric and Ω
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skew-symmetric, we have

D3 =
1

2
Tr(D2)D +

1

3
(TrD3)I , (3.42)

Ω3 =
1

2
Tr(Ω2)Ω , (3.43)

Q3 =
1

2
Tr(Q2)Q+

1

3
(TrQ3)I , (3.44)

and

D2Ω +DΩD + ΩD2 =
1

2
(TrD2)Ω , (3.45)

D2Q+DQD +QD2 =
1

2
(TrD2)Q+ (TrDQ)D + (TrD2Q)I , (3.46)

Ω2D + ΩDΩ +DΩ2 =
1

2
(Tr Ω2)D + (TrDΩ2)I , (3.47)

Ω2Q+ ΩQΩ +QΩ2 =
1

2
(Tr Ω2)Q+ (Tr Ω2Q)I , (3.48)

Q2D +QDQ+DQ2 =
1

2
(TrQ2)D + (TrDQ)Q+ (TrDQ2)I , (3.49)

Q2Ω +QΩQ+ ΩQ2 =
1

2
(TrQ2)Ω , (3.50)

and

DΩQ+ ΩQD +QDΩ +DQΩ+QΩD + ΩDQ = (TrDQ)Ω . (3.51)

Proof. For arbitrary a, b ∈ R , we have by the Cayley-Hamilton formula (3.15),

(D + aΩ + bQ)3 =
1

2

[
Tr(D + aΩ + bQ)2

]
(D + aΩ + bQ)

+
1

3

[
Tr(D + aΩ + bQ)3

]
I .

(3.52)

Expanding both sides and equating the coefficients of the various monomials in a, b

leads to the stated identities.

Finding and proving a full analog of Theorem 3.3.1 in three dimensions is much
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harder. Already for a single traceless 3× 3 matrix N , six generators are required:

TrN2 , TrNN> , TrN3 , TrN2N> , TrN2(N>)2 , TrNN>N2(N>)2 . (3.53)

We refer to, e.g., Theorem 2 in D̄oković [87], who credits Sibirskĭı [104] (in Russian).

According to the proof of Theorem 3 in D̄oković [87], the first five of the generators

are independent, while the sixth may be determined from the first five via a (very

complicated!) quadratic equation. In practice, this means the sixth invariant is

redundant (much like π3 was redundant in the two-dimensional case), and so we will

not further consider it. Furthermore, we will use generators expressed in terms of

D and Ω rather than N and N>. It is easy to go back and forth between the two,

and we omit spelling this out in detail. Without further ado, we introduce the five

invariants of (D,Ω) that will occupy us for the remainder of this section:

η =
1

2
TrD2 , (3.54)

µ = −1

2
Tr Ω2 , (3.55)

β = −1

3
TrD3 , (3.56)

ϕ = TrDΩ2 , (3.57)

ψ = −1

2
TrD2Ω2 . (3.58)

For the full triplet (D,Ω, Q), there are many more invariants. Fortunately, having

restricted to the above invariants for (D,Ω), we will need only four of them in the
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following:

π1 = TrDQ , (3.59)

π2 = TrD2Q , (3.60)

π3 = −Tr Ω2Q , (3.61)

π4 = TrDΩ2Q . (3.62)

3.4.1 Evolution equations

Proposition 3.4.2. We have

Dtη = 3β − ϕ− π1 , (3.63)

Dtµ = 2ϕ , (3.64)

Dtβ =
2

3
η2 +

4

3
ηµ− 2ψ + π2 , (3.65)

Dtϕ = −2

3
µ2 +

8

3
ηµ− 2ψ + π3 , (3.66)

Dtψ =
4

3
ηϕ− 1

3
µϕ+ 3µβ + π4 . (3.67)

Remark 3.4.3. Instead of ψ, it may be preferable to work with the quantity ζ = 2ηµ−2ψ

(see Proposition 3.4.11). In terms of ζ, we have

Dtβ =
2

3
η(η − µ) + ζ + π2 , (3.68)

Dtϕ =
2

3
µ(η − µ) + ζ + π3 , (3.69)

Dtζ =
4

3
(η − µ)ϕ− 2µπ1 − 2π4 . (3.70)

See also the ab-system (3.165) below.
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Remark 3.4.4. In Remark 2.1.13, we observed that

P̃ = P −NN> (3.71)

may be an interesting quantity to study instead of P or its traceless part Q. If instead

of the π-invariants, we use the π̃-invariants defined by

π̃1 = TrDP̃ , π̃3 = −Tr Ω2P̃ , (3.72)

π̃2 = TrD2P̃ , π̃4 = TrDΩ2P̃ , (3.73)

then the evolution equations simplify to

Dtη = 6β − π̃1 , (3.74)

Dtµ = 2ϕ , (3.75)

Dtβ = 4η2 + π̃2 , (3.76)

Dtϕ = 4ηµ+ π̃3 , (3.77)

Dtψ = 3ηϕ+ 5µβ + π̃4 . (3.78)

In particular, note that if we treat π̃1, π̃2 as known, the evolutions for η, β form a

closed system. Treating also π̃3 as known, the evolutions for η, µ, β, ϕ form a closed

system. See also Remark 3.5.5 below for the evolution equations of the eigenvalues of

D and of the vorticity components in the eigenvector basis of D.

Remark 3.4.5. Similarly, if we set

P = P +NN> , (3.79)
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and define corresponding πi invariants, the evolution equations take the form

Dtη = −2ϕ− π1 , (3.80)

Dtµ = 2ϕ , (3.81)

Dtβ = −4ψ + π2 , (3.82)

Dtϕ = −4ψ + 4(η − µ)µ+ π3 , (3.83)

Dtψ = (η − µ)ϕ+ µ(β − ϕ) + π4 . (3.84)

Replacing η by a = η − µ and β by b = β − ϕ (see also (3.165) below), this simplifies

to

Dta = −4ϕ− π1 , (3.85)

Dtb = 4aµ+ π2 − π3 , (3.86)

Dtµ = 2ϕ , (3.87)

Dtϕ = −4ψ + 4aµ+ π3 , (3.88)

Dtψ = aϕ+ µb+ π4 . (3.89)

Proof of Proposition 3.4.2. According to (3.26), the evolutions equations for D and

Ω in three dimensions are:

DtD =
2

3
(η − µ)I−D2 − Ω2 −Q , (3.90)

DtΩ = −DΩ− ΩD . (3.91)

With help of Lemma 3.4.1, we compute

DtD2 =
4

3
(η − µ)D − 2(ηD − βI)−D(Ω2 +Q)− (Ω2 +Q)D , (3.92)
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and

DtΩ
2 = −DΩ2 − Ω2D − 2ΩDΩ (3.93)

= −2(Ω2D + ΩDΩ +DΩ2) + Ω2D +DΩ2 (3.94)

= −2(ϕI− µD) + Ω2D +DΩ2 . (3.95)

Furthermore,

DtD3 = 2(η − µ)D2 − 3(ηD2 − βD)

−
[
D2(Ω2 +Q) +D(Ω2 +Q)D + (Ω2 +Q)D2

]
,

(3.96)

and

Dt(DΩ2) =
2

3
(η − µ)Ω2 −D2Ω2 + µΩ2 −QΩ2 − 2ϕD + 2µD2

+DΩ2D +D2Ω2

(3.97)

= −2ϕD +
2

3
ηΩ2 − 1

3
µΩ2 + 2µD2 +DΩ2D −QΩ2 , (3.98)

and finally

Dt(D2Ω2) =
4

3
(η − µ)DΩ2 − 2(ηDΩ2 − βΩ2)−D(Ω2 +Q)Ω2

− (Ω2 +Q)DΩ2 − 2(ϕD2 − µD3) +D2Ω2D +D3Ω2

(3.99)

= −2

3
ηDΩ2 − 4

3
µDΩ2 + 2βΩ2 − 2ϕD2 + 2µD3

+ (D2Ω2D +D3Ω2)− (QDΩ2 +DQΩ2)− (DΩ4 + Ω2DΩ2) .

(3.100)

Observe now that

D3Ω2 = (ηD − βI)Ω2 , (3.101)

and hence

Tr(D3Ω2) = ηϕ+ 2µβ . (3.102)
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Similarly,

Ω4 = −µΩ2 , (3.103)

and hence

Tr(DΩ4) = −µϕ . (3.104)

Taking traces of the above evolution equations, we thus find

Dtη = 3β − ϕ− π1 , (3.105)

Dtµ = 2ϕ , (3.106)

Dtβ = −4

3
(η − µ)η + 2η2 − 2ψ + π2 =

2

3
η2 +

4

3
ηµ− 2ψ + π2 , (3.107)

Dtϕ = −4

3
(η − µ)µ− 2µ2 + 4ηµ− 2ψ + π3 = −2

3
µ2 +

8

3
ηµ− 2ψ + π3 , (3.108)

Dtψ = −2

3
(η − µ)ϕ+ (ηϕ+ 2µβ)− µϕ+ π4 + (2ηϕ+ 3µβ)− (ηϕ+ 2µβ) (3.109)

= −2

3
(η − µ)ϕ+ 2ηϕ+ 3µβ − µϕ+ π4 (3.110)

=
4

3
ηϕ− 1

3
µϕ+ 3µβ + π4 . (3.111)

3.4.2 Related invariants

Aside from the scalar polynomial orthogonal invariants, there are of course many other

orthogonal invariants that are non-scalar (like the vorticity vector ω) or non-polynomial

(like the eigenvalues λi of D). We will list some of these other orthogonal invariants

and their basic properties in this section, and prove more detailed statements and

bounds relating them to the scalar polynomial orthogonal invariants in §3.4.3.
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Invariants related to D

D is real symmetric and hence orthogonally diagonalizable. We call its three real

eigenvalues

λ1 ≥ λ2 ≥ λ3 . (3.112)

Let us record some elementary observations about the eigenvalues. Since D is traceless,

we have

λ1 + λ2 + λ3 = 0 . (3.113)

From this it follows immediately that

λ1 ≥ 0 ≥ λ3 . (3.114)

Furthermore, we will be interested in the spectral radius ρ of D,

ρ = max{λ1,−λ3} , (3.115)

and the quantity

ρ− = min{λ1,−λ3} . (3.116)

Then we have

|λ2|+ ρ− = ρ , (3.117)

and since |λ2| ≤ ρ− ≤ ρ, this implies

0 ≤ |λ2| ≤
1

2
ρ ≤ ρ− ≤ ρ . (3.118)
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Invariants related to Ω

Recall that Ω is related to the vorticity ω via Ωij = 1
2
εijkω

k. That is,

Ω =
1

2


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 . (3.119)

We find by direct computation that

µ = −1

2
Tr Ω2 =

1

4
|ω|2 . (3.120)

The direction of vorticity is

ξ =
ω

|ω|
=

ω

2
√
µ
. (3.121)

Invariants involving both D and Ω

An alternative to ψ is

ζ =
1

4
|Dω|2 = µ|Dξ|2 . (3.122)

(See also Remark 3.4.3 above and Proposition 3.4.11 below.)

The vorticity stretching factor is

α =
ϕ

µ
= ξ · Dξ . (3.123)

It is called vorticity stretching factor because of the identity Dt log |ω| = α for the

Euler equations. The invariants α and ξ play an important role in the Constantin-

Fefferman-Majda regularity criterion for the Euler equations [30].

Galanti, Gibbon, and Heritage [57] introduced the vector

χ = ξ ×Dξ (3.124)
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in their study of vorticity alignment. The vector χ (along with the scalar α) also plays

a prominent role in the elegant quaternion-based formulation of the Euler equations

of Gibbon et al. [59]. Note that, if we let θ denote the angle between ξ and Dξ, then

α2 =
ζ

µ
cos2 θ , (3.125)

|χ|2 =
ζ

µ
sin2 θ , (3.126)

Thus, we have

ζ

µ
= α2 + |χ|2 . (3.127)

Also, plugging α = ϕ
µ

into the equation for α2, we find

ϕ2

µζ
= cos2 θ . (3.128)

3.4.3 Algebraic relations and constraints

First, we observe that η is approximately the spectral radius of D, while β
η

is approxi-

mately the middle eigenvalue λ2 of D.

Proposition 3.4.6 (Properties of η and β).

(i) η = λ2
i + λiλj + λ2

j for i 6= j ,

(ii) η ≤ ρ2 ≤ 4
3
η ,

(iii) β = − det(D) = −λ1λ2λ3 ,

(iv) 0 ≤ β2 ≤ 4
27
η3 ,

(v) 2
3
≤ β

λ2η
≤ 1 .

Proof. For (i), we use
∑3

i=1 λi = 0 and the definition of η to compute

η =
1

2

(
λ2
i + λ2

j + (λi + λj)
2
)

= λ2
i + λiλj + λ2

j . (3.129)
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In particular, we have

η = ρ2 − ρρ− + ρ2
− . (3.130)

Holding ρ fixed, this expression is maximized when ρ− = ρ (i.e., λ2 = 0) and minimized

when ρ− = 1
2
ρ (i.e., |λ2| = ρ−). Evaluating at these extreme cases gives (ii).

For (iii), we compute

−3β = λ3
1 + λ3

2 + λ3
3 (3.131)

= λ2
1(−λ2 − λ3) + λ2

2(−λ1 − λ3) + λ3(λ1 + λ2)2 (3.132)

= λ1λ2(−λ1 − λ2) + 2λ1λ2λ3 (3.133)

= 3λ1λ2λ3 . (3.134)

Using this, we find that

β2 = λ2
1λ

2
2λ

2
3 = ρ2ρ2

−(ρ− ρ−)2 (3.135)

is maximized for ρ− = 1
2
ρ. In combination with (ii), we find

β2 ≤ 1

16
ρ6 ≤ 4

27
η3 , (3.136)

as desired. (v) is similarly obtained by observing that

β

λ2η
=

ρρ−
ρ2 − ρρ− + ρ2

−
(3.137)

is maximized when ρ− = ρ and minimized when ρ− = 1
2
ρ for fixed ρ and subject to

the constraint ρ− ∈ [1
2
ρ, ρ].

Remark 3.4.7. Recall that there is nothing specifically fluid-dynamic about D here.

Proposition 3.4.6 is valid for any 3× 3 traceless real symmetric matrix D. The same
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remark applies to all of this section: Ω likewise stands in for any real skew-symmetric

matrix.

Remark 3.4.8. All the inequalities are sharp, as they are attained in the extreme cases

λ2 = 0 or λ2 = ±1
2
ρ. Furthermore, if |λ2| can be bounded away from 0 or 1

2
ρ, then

there is room for improvement in the inequalities. This is perhaps most easily seen

when writing η as

η = ρ2

(
1 +

λ2

ρ
+

(
λ2

ρ

)2
)
. (3.138)

Proposition 3.4.9 (Properties of µ and ϕ).

(i) ϕ
µ

=
∑3

i=1 λiξ
2
i ,

(ii) 0 ≤ ϕ2 ≤ ρ2µ2 ≤ 4
3
ηµ2 .

Proof. We compute in a basis where D is diagonal, i.e., D = diag(λ1, λ2, λ3). By

direct computation, we have

Ω2 = µ(ξ ⊗ ξ − I) . (3.139)

Recalling that
∑3

i=1 λi = 0, this gives

ϕ

µ
=

Tr(DΩ2)

µ
=

3∑
i=1

λiξ
2
i . (3.140)

Using λ2
i ≤ ρ2 ≤ 4

3
η (see the previous Proposition), (ii) follows immediately from (i).

Proposition 3.4.10 (Determinant of N = D + Ω). We have

detN = ϕ− β . (3.141)
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Proof. Since N is a 3× 3 traceless matrix, we have (see the proof of Corollary 3.1.7)

detN =
1

3
TrN3 =

1

3
Tr(D3 +DΩ2 + ΩDΩ + Ω2D) (3.142)

=
1

3
TrD3 + TrDΩ2 = −β + ϕ . (3.143)

Here we used that

Tr(Ω3 + ΩD2 +DΩD +D2Ω) = Tr Ω3 + 3 TrD2Ω = 0 (3.144)

by symmetry considerations (see Corollary 3.1.4).

Proposition 3.4.11 (Properties of ψ and ζ).

(i) ζ
µ

=
∑3

i=1 λ
2
i ξ

2
i = |Dξ|2 ,

(ii) ζ + 2ψ = 2ηµ ,

(iii) λ2
2µ ≤ ζ ≤ ρ2µ (hence 0 ≤ ζ ≤ 4

3
ηµ),

(iv) (η − 1
2
ρ2)µ ≤ ψ ≤ (η − 1

2
λ2

2)µ (hence 1
3
ηµ ≤ ψ ≤ ηµ).

Proof. (i) is immediate from the definition of ζ upon recalling 4µ = |ω|2, and (iii)

follows immediately from (i). For (ii), we compute in a basis where D is diagonal.

Then using D2 = diag(λ2
1, λ

2
2, λ

2
3) and (3.139), we may compute

− 2ψ = Tr(D2Ω2) = µ

3∑
i=1

λ2
i ξ

2
i − µ

3∑
i=1

λ2
i = ζ − 2ηµ . (3.145)

(iv) now follows from combining (ii) and (iii). For the “hence” statements, recall that

ρ2 ≤ 4
3
η.

Proposition 3.4.12. We have

ϕ2 ≤ µζ . (3.146)
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Proof. Since
∑3

i=1 ξ
2
i = 1, Jensen’s inequality gives

(
ϕ

µ

)2

=

 3∑
i=1

λiξ
2
i

2

≤
3∑
i=1

λ2
i ξ

2
i =

ζ

µ
. (3.147)

Alternatively, this follows immediately from the geometric equation (3.128):

ϕ2

µζ
= cos2 θ . (3.148)

3.4.4 Spatial integrals of some of the invariants

Proposition 3.4.13. For sufficiently smooth and decaying (or periodic) solutions of

the 3d incompressible Euler equations, we have

(i)
∫

(η − µ) dx = 0 ,

(ii)
∫
π1 dx = 0 ,

(iii)
∫

(β − ϕ) dx = 0 ,

(iv)
∫

(π2 − π3) dx = −2
3

∫
(η − µ)2 dx ,

(v)
∫
η dx =

∫
µ dx = 1

4
||ω||2L2

x
= 1

4
||∇xu||2L2

x
.

Proof. (i) is immediate from −∆xp = Tr(N2) = 2(η − µ). Next, since TrN = 0 by

div u = 0, and Tr ΩQ = 0 by symmetry considerations, we have

π1 = TrDQ = TrNQ = TrNP , (3.149)

and hence

∫
π1 dx =

∫
∇x∇xp : ∇xu dx = −

∫
∇xp · ∇x(divx u) dx = 0 . (3.150)
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(iii) follows from (i) and (ii) by integrating

Dt(η − µ) = 3(β − ϕ)− π1 , (3.151)

and (iv) in turn follows from (iii) by integrating

Dt(β − ϕ) =
2

3
(η − µ)2 + (π2 − π3) . (3.152)

Since µ = 1
4
|ω|2, (v) follows from (i) and the calculation

∫
|∇xu|2 dx =

∫
u · (−∆xu) dx =

∫
u · curlx curlx u dx

=

∫
curlx u · curlx u dx =

∫
|ω|2 dx ,

(3.153)

which is valid for any divergence-free u, thanks to the differential identity

−∆v = curl curl v −∇ div v . (3.154)

Corollary 3.4.14. We have

d

dt
||ω||2L2 = 8

∫
ϕ dx = 8

∫
β dx . (3.155)

Proof. This follows from the previous proposition by integrating Dtµ = 2ϕ.

Remark 3.4.15. In terms of the (non-isotropic) pressure Hessian P , the integrals (ii)

and (iv) in Proposition 3.4.13 take the form

∫
TrNP dx = 0 , (3.156)∫

TrN2P dx = −2

∫
(η − µ)2 dx . (3.157)

83



Another interesting integral is

∫
Tr(NN>P ) dx =

∫
ujxiu

j
xk
pxixk dx =

∫
ujujxk(−∆xp)xk dx (3.158)

=

∫
∇x

1

2
|u|2 · ∇x(TrN2) dx =

∫
(−∆x|u|2)(η − µ) dx . (3.159)

Remark 3.4.16. In different notation, some of these integrals occur already in various

places in the literature (e.g., Chae [17]), however on a somewhat ad hoc basis. We

hope the reader appreciates our more systematic approach.

3.4.5 Controlling the enstrophy by the second eigenvalue of

the deformation tensor

As an application of the invariants framework, we give an easy proof of the following

estimate.

Theorem 3.4.17 (Chae (2006) [17]). Sufficiently smooth and decaying (or periodic)

solutions of the incompressible 3d Euler equations satisfy

sup
0<t<T

||ω||L2
x
≤ exp

(∫ T

0

||λ+
2 ||L∞x dt

)
||ω0||L2

x
. (3.160)

Proof. From Corollary 3.4.14, we have

d

dt
||ω||2L2

x
= 8

∫
β dx = 8

∫ (
β

η

)
η dx ≤ 8

∥∥∥∥∥
(
β

η

)+
∥∥∥∥∥
L∞x

∫
η dx . (3.161)

From Proposition 3.4.13, we have

∫
η dx =

1

4
||ω||2L2

x
, (3.162)
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and from Proposition 3.4.6, we have β
η
≤ λ2. Putting this all together, we get

d

dt
||ω||2L2

x
≤ 2||λ+

2 ||L∞||ω||2L2
x
, (3.163)

or in slightly simpler form,

d

dt
||ω||L2

x
≤ ||λ+

2 ||L∞||ω||L2
x
. (3.164)

The theorem now follows from Gronwall’s inequality.

Remark 3.4.18. Finiteness of ||ω||L2
x

for all time is sufficient to guarantee a global

smooth solution in the case of the Navier-Stokes equations, but it is not enough for

the Euler equations.

3.4.6 On a model of Vieillefosse

In 1982, Vieillefosse proposed to study a purely local model of the incompressible

Euler equations obtained by simply neglecting the anisotropic part of the pressure

Hessian [113]. (In our notation, this means setting Q = 0. In particular, all the πi

invariants vanish then.) Vieillefosse showed that in this model there is generic blowup

with λ2 → +∞, and the vorticity ω aligning asymptotically with the eigenvector of D

corresponding to λ2. (See also Vieillefosse [114] and Cantwell [15].)

The model received some interest, since such vorticity alignment with the second

eigenvector of D was observed numerically in Navier-Stokes turbulence simulations by

Ashurst et al. [4] and confirmed by many others later on. (For numerical evidence on

the alignment of various vectors in the Euler rather than Navier-Stokes equations, we

refer to Ohkitani and Kishiba [86].)

However, the nature of the blowup it predicts as well as its explanation for the

observed alignment are highly questionable. A more convincing heuristic argument
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for the vorticity alignment was provided by Jiménez [70]: Starting from the empirical

observation that thin vortex tubes (where vorticity is roughly parallel) tend to form in

turbulence, the vorticity alignment with the second eigenvector of D is a consequence

of incompressibility and the Biot-Savart law. This gives a kinematic and nonlocal

explanation for the vorticity alignment, in stark contrast to the dynamic and local

explanation offered by the Vieillefosse model.

Given these critiques, the Vieillefosse model now probably resides more in the

category of historical curiosities. The purpose of this section is not to revive interest

in the model, but primarily to illustrate the usefulness of the invariants approach to

local systems of PDE. If in the future a sufficiently simple1 random model for the

πi invariants becomes available (instead of just setting them to zero), we hope this

method of analysis could be helpful.

To study Vieillefosse’s model in our framework, let us first set2 a = η − µ and

b = β − ϕ, and πi = 0 for all i. Then Proposition 3.4.2 yields



Dta = 3b ,

Dtb =
2

3
a2 ,

Dtµ = 2ϕ ,

Dtϕ =
2

3
µa+ ζ ,

Dtζ =
4

3
aϕ .

(3.165)

1Some more sophisticated pressure Hessian closures than Vieillefosse’s are discussed in Chevillard
et al. [20].

2In the literature, Q and R (or q and r) are occasionally used instead of a and b, and signs may
differ.
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Conserved quantities

Two conserved quantities along particle trajectories may now easily be identified:

Dt(4a
3 − 27b2) = 0 , (3.166)

Dt(µζ − ϕ2) = 0 . (3.167)

Solutions to the a-b-couplet

The evolutions for a and b may be combined to form

DtDta = 2a2 . (3.168)

This equation possesses solutions of the form

a(t) = 31/3 ℘

(
T − t
31/3

; 0, C

)
, (3.169)

where C, T are constants depending on the initial data, and ℘(z; g2, g3) denotes a

Weierstrass elliptic function. (For other solutions, see Cantwell [15].) We found these

solutions with the help of Mathematica, but they can be easily verified using the

differential equation satisfied by ℘,

℘′′(z) = 6℘(z)2 − 1

2
g2 . (3.170)

In the special case C = 0, the solution is exactly

a(t) =
3

(T − t)2
, (3.171)
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and for general C, the same form holds asympotically:

a(t) =
3

(T − t)2
+O((T − t)4) . (3.172)

So there are many solutions where
√
a(t) blows up to +∞ like O(T − t)−1.

For the above facts and much more on the Weierstrass elliptic functions, see

Reinhardt and Walker [95] or Southard [106].

Blowup rate for vorticity

From here on out, we will just give an informal asymptotic discussion. For exact

calculations, we refer to Cantwell [15]. Neglecting the O(T − t)4 term in (3.172), which

should not matter asymptotically, we have a(t) ∼ 3
(T−t)2 . But then

DtDt
√
µ =

2

3
a
√
µ+

µζ − ϕ2

µ3/2
∼ 2

(T − t)2

√
µ+

C0

µ3/2
, (3.173)

where we used that µζ − ϕ2 = C0 is conserved along particle trajectories. Neglecting

the term C0/µ
3/2, which we expect to be small along a trajectory where µ blows up,

we conclude that, generically,

√
µ(X(a, t), t) ≈ C1(T − t)2 +

C2

T − t
∼ C2

T − t
, (3.174)

with C2 > 0. Thus, we expect a blowup rate for |ω| = 2
√
µ of O(T − t)−1.

Blowup of λ2 → +∞

Since µ blows up to +∞, so does ϕ = 1
2
Dtµ. In particular, ϕ is asymptotically positive.

Using

Dtη = Dt(a+ µ) = 3β − ϕ (3.175)
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and Proposition 3.4.6, we thus have

λ2 ≥
β

η
≥
β − 1

3
ϕ

η
=

1

3

Dtη

η
=

1

3
Dt log η

t→T−−→ +∞ . (3.176)

Vorticity alignment with the second eigenvector of D

Recall that θ denotes the angle between ω and Dω. According to (3.128), we have

sin2 θ =
µζ − ϕ2

µζ
=
C0

µζ
≤ C0

λ2
2µ

2

t→T−−→ 0 , (3.177)

where we used the bound ζ ≥ λ2
2µ from Proposition 3.4.11, and λ2, µ→ +∞. This

implies that asymptotically ω becomes parallel to Dω (i.e., becomes aligned with an

eigenvector of D).

The harder part is showing which of the eigenvectors ω becomes aligned with.

Using ϕ
µ

=
∑

i λiξ
2
i (see Proposition 3.4.9) and (3.177), we have ϕ

µ
∼ λi, where λi is

the eigenvalue corresponding to the eigenvector that ω asymptotically aligns with.

Since ϕ is positive, so must be λi. Thus i = 1 or i = 2. Assume towards contradiction

that i = 1. Then using ϕ = 1
2
Dtµ and µ = O(T − t)−2, we find

λ1 ∼
ϕ

µ
=

1

2
Dt log µ ∼ 1

T − t
. (3.178)

But then, using Proposition 3.4.6,

a = η − µ = λ2
1 + λ1λ2 + λ2

2 − µ ≤ 3λ2
1 − µ ∼

3− C2
2

(T − t)2
. (3.179)

This contradicts a(t) ∼ 3
(T−t)2 (see (3.172)) and leaves only the possibility i = 2.
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3.5 Rotating the reference frame along a particle

trajectory

The reader may wonder:

1. Why bother with the invariants η and β when we could just use any two of the

eigenvalues of D to capture these degrees of freedom instead?3

2. On a similar note, instead of indirectly measuring vorticity magnitude and

alignment with eigenvectors of D through the invariants µ, ϕ and ζ, why not

directly work with the three components of the vorticity ω with respect to the

eigenvector basis of D?

We explore these two ideas in §3.5.1 and §3.5.2, respectively. The key idea is to

introduce an orthogonal matrix O(X(a, t), t) along a particle trajectory such that

D = ODO> is diagonal. In §§3.5.3–3.5.5, we show some other interesting choices

for O. Finally, we make some remarks on the advantages and disadvantages of this

approach in §3.5.6.

3.5.1 Evolution equations for the eigenvalues of D

Let us fix a particle label a. Since D(X(a, t), t) is real-symmetric, it can be diagonalized

by an orthogonal matrix. That is, we can find a matrix O(X(a, t), t) such that

diag(λ1, λ2, λ3) = ODO> . (3.180)

If we fix some choice of O that diagonalizes D at time t = 0 and require O to vary

continuously in time, then O(X(a, t), t) is unique—provided all the eigenvalues are

distinct. To simplify exposition, we will implicitly assume that throughout this section.

3There are only two degrees of freedom since we have λ1 + λ2 + λ3 = 0 by incompressibility.
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Remark 3.5.1. Unfortunately, needing to take special care of situations where the

eigenvalues may not be distinct is a fundamental technical downside to the eigenvalue

approach, and is an argument in favor of using the scalar polynomial orthogonal

invariants η and β.

Using such a diagonalization, we can derive the evolution equations for the eigen-

values of D. But first we need a lemma about interchanging orthogonal conjugation

and differentiation. For this, it will be convenient to introduce the notation

A := OAO> . (3.181)

Lemma 3.5.2. If O is orthogonal, then

DtA = DtA+ [(DtO)O>, A] , (3.182)

where [A,B] := AB −BA.

Proof. By the Leibniz rule,

DtA = DtA+ (DtO)AO> +OA(DtO)>

= DtA+
(

(DtO)O>
)
A+ A

(
(DtO)O>

)>
.

(3.183)

(3.183) is equivalent to (3.182) because (DtO)O> is skew-symmetric:

0 = DtI = Dt(OO>) = (DtO)O> +O(DtO>) = (DtO)O> + ((DtO)O>)> . (3.184)

(This is related to the fact that the skew-symmetric matrices make up the Lie algebra

of the orthogonal group.)
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Proposition 3.5.3. The eigenvalues of D evolve according to

Dtλi = −λ2
i + µ(1− ξ2

i )− P ii . (3.185)

Proof. Take A = D and O as in (3.180). Then by Lemma 3.5.2,

DtD = −D2 − Ω
2 − P + [D, (DtO)O>] . (3.186)

But the commutator has zeroes on the diagonal since D is diagonal and (DtO)O> is

skew-symmetric (and hence has zeroes on its diagonal). Recalling the formula (3.139)

for Ω2, we obtain (3.185) by looking at the diagonal components of the evolution.

Remark 3.5.4. We can find a similar result for the Navier-Stokes equations, provided

a diagonalizing orthogonal matrix field O(x, t) is defined and differentiable for x in

a neighborhood of X(a, t). We must check that the diagonalization commutes with

the Laplacian on the diagonal. Letting ∂x denote one of the partial derivatives ∂
∂xi

for

i = 1, 2, 3, and writing R = (∂xO)O>, we find

∂xA = ∂xA+ [R,A] , (3.187)

just as in Lemma 3.5.2. Applying this three times, we have

∂x∂xD = ∂x∂xD + ∂x[R,D] (3.188)

= ∂x∂xD + [R, ∂xD] + ∂x[R,D] (3.189)

= ∂x∂xD + [R, ∂xD]− [R, [R,D]] + ∂x[R,D] . (3.190)

The claim now is that all the commutators vanish on the diagonal. We compute:

[R,D]ij = Rik(λkδkj)− (λiδik)Rkj = (λj − λi)Rij , (3.191)
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and similarly for [R, ∂xD]—just replace λk by ∂xλk. Furthermore,

[R, [R,D]]ij = Rik(λj − λk)Rkj − (λk − λi)RikRkj = (λj − λi)RikRkj . (3.192)

Clearly, these expressions all vanish for i = j. Thus, for the Navier-Stokes equations,

the eigenvalue evolution (3.185) becomes simply

(Dt − ν∆)λi = −λ2
i + µ(1− ξ2

i )− P ii . (3.193)

3.5.2 Evolution of the vorticity in the eigenvector basis of D

Let us write R = (DtO)O> where O(X(a, t), t) is an orthogonal matrix diagonalizing

D as in the previous section. It is convenient to further introduce the notation

Ωij =
1

2
εijkωk , (3.194)

Rij =
1

2
εijkrk , (3.195)

P ij = δijpi + |εijk|qk . (3.196)

As we have seen, R is skew-symmetric and satisfies

DtD = −D2 − Ω
2 − P + [D, R]. (3.197)

The diagonal part of this equation gives the eigenvalue evolutions, as seen above. For

the off-diagonal part, the left-hand side vanishes. This allows us to solve explicitly for

R. The result is

ri = εijk
qi + 1

4
ωjωk

λk − λj
. (3.198)
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Observe, once again, the breakdown of this approach when the eigenvalues are not

distinct. Using (3.198), we can go further and compute the evolution of ω = Oω:

Dtω = (D +R)ω = diag(λ1, λ2, λ3)ω +
1

2
ω × r . (3.199)

The components of this equation are the desired evolution equations for the components

of ω with respect to the eigenvector basis of D.

Remark 3.5.5. Using P̃ = P −NN> (see Remark 2.1.13), we have

DtD = −2D2 − P̃ + [R− Ω,D] . (3.200)

This leads to the nicer equations

Dtλi = −2λ2
i + p̃i , (3.201)

and

Dtωi = λiωi + |εijk|
ωj q̃k
λj − λi

. (3.202)

3.5.3 Choosing R = Ω

Instead of diagonalizing D, equation (3.200) suggests that along with using P̃ =

P −NN> instead of P , it could be interesting to simply take R = Ω, with O = I at

time 0, say. In terms of O, this means (DtO)O> = OΩO>, i.e., DtO = OΩ. We have

Dt(OO>) = (OΩ)O> +O(−ΩO>) = 0 , (3.203)
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so this evolution indeed preserves orthogonality of the matrix O. We find

DtD = −2D2 − P̃ , (3.204)

Dtω = (D +R)ω = Dω , (3.205)

Dtv− = (R−D − Ω)v− = −Dv− , (3.206)

where for the ω evolution we used

Rω = Ωω = −1

2
ω × ω = 0 . (3.207)

For the definition of v− = u+∇xq−, see §2.3.2.

3.5.4 Fixing the direction of ω

If the vorticity is nonzero for some particle label a at time 0, then it is nonzero for

all time (at least as long as the solution is regular). For such a particle label a, it is

thus possible to find an orthogonal matrix O(X(a, t), t) that keeps the direction of

the vorticity ω fixed along the particle trajectory (in the +e3 direction, say). Let us

write, in this basis,

ω =


0

0

ω3

 , (3.208)

Rij =
1

2
εijkrk , (3.209)

Dij =


a1 b3 −b2

b3 a2 b1

−b2 b3 a3

 . (3.210)
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The initial data O(a, 0) must obviously be chosen so as to make ω point in the +e3

direction. From the equation Dtω = (D +R)ω, i.e.,


0

0

Dtω3

 =


−(b2 + 1

2
r2)

b1 + 1
2
r1

a3

ω3 , (3.211)

it then follows that we must take r1 = −2b1, r2 = −2b2. Note that we may freely

choose r3. This is because rotating in the plane perpendicular to the vorticity leaves

the vorticity unchanged. (This extra degree of freedom also applies to our choice of

initial data O(a, 0), of course.) For the special choice of r3 = −2b3 + ω, the evolution

of v− involves an upper-triangular matrix:

Dtω3 = a3ω3 , (3.212)

Dtv− = −


a1 2b3 −2b2

0 a2 2b1

0 0 a3

 v− . (3.213)

3.5.5 Diagonalizing the left Cauchy-Green tensor

The tensor C = J>J is another symmetric tensor of interest. In the continuum

mechanics literature, it is referred to as the left Cauchy-Green deformation tensor.4

With the help of Lemma 2.1.4, we find

DtC = DC + CD − [Ω, C] . (3.214)

Since C is symmetric, we may orthogonally diagonalize it, just as we did with D

in §3.5.1. Since C is positive-definite (x · J>J · x = |Jx|2 ≥ 0 for arbitrary x), its

4Recall our unusual index ordering Jij = xjai . In the literature, the left Cauchy-Green tensor is
usually written as JJ>, and J>J usually denotes the right Cauchy-Green tensor.
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eigenvalues are nonnegative, and since det J>J = 1, they must in fact all be positive.

So let us denote its eigenvalues by µ2
i and write

Cij = µ2
i δij , (3.215)

Rij =
1

2
εijkr

k , (3.216)

Dij = aiδij + |εijk|bk . (3.217)

From the diagonal and off-diagonal parts of

DtC = DC + CD + [R− Ω, C] , (3.218)

we then find

Dtµi = aiµi , (3.219)

and

ri = ωi + εijkbi
µ2
j + µ2

k

µ2
j − µ2

k

. (3.220)

As with D, trouble arises when the eigenvalues are not distinct.

Remark 3.5.6. The relationship between the eigenvalues of the right Cauchy-Green

tensor JJ> and the eigenvalues of D is studied in Chae, Constantin, and Wu [19].

3.5.6 Discussion

As we have seen, the evolution equations (3.185) (and especially (3.201)) for the

eigenvalues of D are simpler than the corresponding equations for η and β. However,

this approach suffers from technical hurdles when the eigenvalues of D are not distinct.

So in general we think working with η and β is more advantageous. Recall also from
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Proposition 3.4.6 that

√
η ≤ ρ ≤

√
4

3
η ,

|β|
η
≤ |λ2| ≤

3

2

|β|
η
, sgnλ2 = sgn β , (3.221)

so the eigenvalues may be easily approximated using η and β.

There are, however, some situations where it is advantageous to work directly

with the eigenvalues: In symmetric scenarios, such as on the axis of symmetry of an

axisymmetric flow, at least some of the directions of the eigenvectors of D are usually

fixed by the symmetry, and then no issues with distinctness of eigenvalues arise. For

some examples of such scenarios, we refer to §4 of Chae, Constantin, and Wu [19] and

Chae [18].
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Chapter 4

An Idealized Inviscid Model for

Liquid-Vapor-Solid Systems

4.1 Introduction

We consider systems with two immiscible fluids in contact with a nondeformable solid.

Typical examples, cross-sections of which are shown in Figure 4.1, are a glass of water,

a droplet spreading on a horizontal solid surface, or a solid object floating on water.

With these examples in mind, we will call one of the fluid phases liquid and the other

liquid

vapor

solid

liquid

vapor

solid

liquid

vaporsolid

Figure 4.1: Two-dimensional cross-sections of examples of the types of systems under
consideration.

vapor, but really either could be any fluid well-modeled by the incompressible Euler

equations. Some of the discussion will allow for viscosity, but the main point of this

chapter is to “derive” an idealized augmented Young-Laplace law (4.62) for modeling
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dynamic inviscid liquid-vapor-solid systems. Ultimately, we propose to study the

system (4.63) for a fixed and non-rotating solid and a partially wetting liquid:



ρ(∂tu+ u · ∇u) = −∇p , in Ω,

div u = 0 , in Ω,

u · n = 0 , on ΓSL and ΓSV ,

JuK · n = 0 , on Γ,

JpK = γH + γ
cos θs − cos θ

sin θ
δΣ , on Γ.

(4.1)

(For an explanation of the notation, see §4.1.1; for the meaning of the partially

wetting hypothesis, see §4.2.1.) The last equation is the idealized augmented Young-

Laplace law, and it contains a singular Dirac measure δΣ that will eventually require

a substantive interpretation.

We emphasize once more that the above system is an idealized mathematical

model. Examples of simplifying assumptions we made are:

1. The fluids are inviscid.

2. The solid is nondeformable and its surface is smooth.

3. The solid is completely fixed in space and does not rotate.

4. The model is purely macroscopic: There are no conjoining/disjoining pressures

like van der Waals or electrostatic interactions.

For many applications, viscosity of the liquid plays an important role, and the solid

boundaries should be treated as elastic and rough (see, e.g., §3 in de Gennes et

al. [36]). Also, an original motivation for this research was to better understand the

curvature-driven assembly of nanoparticles reported by Cavallaro et al. [16], and for

that it does not make sense to assume the solids are fixed. Furthermore, for thin films
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and in the microscopic vicinity of the triple junction, van der Waals interactions and

the like cannot be ignored. We discuss this last issue more in §4.5.

Despite these practical limitations, we believe this model is a useful stepping

stone for clarifying the specification of boundary conditions for macroscopic dynamic

models that allow for moving contact lines and dynamic contact angles. The correct

specification of these boundary conditions is a long-standing source of controversy,

and at least two issues are of importance here:

1. Dynamic contact angle and surface tension: When there is surface tension, and

the contact angle differs from its equilibrium value, then there are additional

stresses at the triple junction that must be incorporated into the model.

2. Moving contact line and no-slip: In the viscous case, the widely used no-slip

boundary conditions are incompatible with motion of the triple junction and so

must be modified in its vicinity.

In the literature, the second issue has received much more attention and the first is

frequently ignored completely.1 By studying inviscid models, where the second issue

does not arise, we hope to shed light on the first issue. (Note also that viscous stresses

are a result of the motion of particles, whereas the stresses at the triple junction due

to surface tension depend purely on the instantaneous geometric configuration of the

liquid, vapor, and solid.)

The rest of the chapter is structured as follows. In the remainder of this section,

we explain our notation, review some geometric concepts and formulas, and discuss

related literature. In §4.2, we briefly review the static problem and give a variational

derivation of a static analog of the idealized augmented Young-Laplace law. In §4.3,

we explain the derivation of the dynamic system (4.63). As a compatibility check, we

1Perhaps this is why, in much of the literature, the contact angle is prescribed as its equilibrium
value as a boundary condition. However, experimental evidence for moving contact lines as well as
plain everday experience suggest there should be a macroscopic model in which the contact angle
can vary dynamically.
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show in §4.4 that the system (4.63) gives rise to the correct equilibrium solutions, at

least for the problem of a half-plane solid and irrotational flow. In §4.5, we make some

remarks on modeling long-range interactions near the triple junction. Finally, in §4.6,

we discuss ideas and directions for further research.

4.1.1 Setup and notation

The liquid occupies region ΩL and the vapor occupies region ΩV . Fluid i has velocity

ui, pressure pi, constant density ρi, and constant kinematic viscosity µi. We will denote

the solid-liquid, liquid-vapor, and vapor-solid interfaces by ΓSL,ΓLV ,ΓSV , respectively.

The interface Γi has outer unit conormal νi and constant surface tension γi. The

intersection of the three interfaces is called the triple junction2 (or contact line in

three dimensions) and we will denote it by Σ. The contact angle θ is defined for points

on Σ by

cos θ = νLV · νSL . (4.2)

We assume the solid boundary is at least C1, and so νSL = −νSV . The normal vector

on the interfaces is oriented as pointing outwards from the liquid on ΓSL and ΓLV ,

and as pointing outwards from the vapor on ΓSV . Since we will mostly be concerned

with the liquid-vapor surface, we frequently write just Γ for ΓLV , and γ for γLV . All

of this is summarized in Figure 4.2.

We write Ω = ΩL ∪ ΩV and define unsubscripted versions of u, p, ρ, µ by ρ =

ρLχΩL + ρV χΩV and so on. On the interfaces, we use a double bracket and an over

2In general, the interfaces are hypersurfaces in Rn and the triple junction is a codimension-2
manifold. We occasionally write “interface” instead of “surface” and “triple junction” instead of
“contact line” to avoid dimensional connotations, following the terminology of, e.g., Depner, Garcke,
and Kohsaka [39].
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ΓSL

ΓSV

Γ = ΓLVΩL

ΩV
n

n nn

θ

νSV = −νSL

−νLV

Σ

Σ

Figure 4.2: Notation

bar to denote the jump and the average of a quantity, respectively. That is,

JfK = fV − fL , (4.3)

f̄ =
1

2
(fL + fV ) . (4.4)

Finally, we denote the outer normal velocity component of Γ by V and the velocity

component of the triple junction in the direction νSL by v.3 It is related to V on

Σ = ∂Γ via

v = V nLV · νSL = V sin θ . (4.5)

4.1.2 Geometric concepts

We state here without proof and without regularity assumptions only the bare minimum

necessary for this chapter, as calculations in this chapter are mostly formal. For more

details and a well-developed formalism for studying evolving hypersurfaces and triple

junctions, we recommend §2 of Depner’s dissertation [38], where also pointers to more

traditional references may be found. See also Depner, Garcke and Kohsaka [39] and

references therein.

3In dimensions n ≥ 3, the triple junction is a manifold of dimension n− 2 ≥ 1, and so, depending
on the parametrization, the velocity of the triple junction could have tangential components as
well. However, the component of the velocity in the direction νSL is independent of the choice of
parametrization.
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Definition 4.1.1. Hk denotes k-dimensional Hausdorff measure.

Definition 4.1.2. H denotes the mean curvature of a hypersurface.

For a hypersurface in Rn, parametrizable as a graph {(x, η(x)) | x ∈ Rn−1}, the

mean curvature is given by

H = divx
∇xη√

1 + |∇xη|2
. (4.6)

Convention 4.1.3. Following Depner [38], we use the normalization of mean cur-

vature such that H = −n for a unit sphere in Rn+1 oriented with outwards pointing

normal. The sign choice varies in the literature. Traditionally, the normalization

H = ±1 is more common (and is necessary to justify the “mean” in “mean curvature”).

The justification of using ±n is that many formulas (like the transport identity below)

are more naturally stated using this normalization.

Proposition 4.1.4. For a bounded evolving region Ω(t) ⊂ Rn, we have

d

dt

∫
Ω(t)

f dHn =

∫
Ω(t)

∂tf dHn +

∫
∂Ω(t)

fV dHn−1 (4.7)

where V is the normal velocity of ∂Ω.

Proposition 4.1.5. For an evolving hypersurface Γ(t) ⊂ Rn, we have

d

dt

∫
Γ(t)

1 dHn−1 = −
∫

Γ(t)

V H dHn−1 +

∫
∂Γ(t)

v dHn−2 (4.8)

where V is the normal velocity of Γ, and v is the outer conormal velocity of ∂Γ.

4.1.3 Sign conventions

A number of sign choices were made and these, unfortunately, vary widely in the

literature. As much as possible, we try to follow the choices of the survey paper of

104



Bardos and Lannes [7]. To summarize, our sign conventions are:

• The mean curvature H is negative for spheres with outwards-pointing normal.

• (x, y)⊥ = (−y, x) and ∇⊥f = (−∂yf, ∂xf).

• The normal n on Γ points from ΩL to ΩV .

• The bracket is JfK = fV − fL.

• The unit tangent vector τ along Γ is chosen such that (τ, n) is a positively

oriented basis of R2. (This means τ = −n⊥.)

• Arc length s increases in the direction of τ along Γ.

4.1.4 Related literature

For the physics of surface tension and wetting, we used as our primary reference

the book by de Gennes, Brochard-Wyart, and Quéré [36]. For the issue of disjoin-

ing/conjoining pressure in thin films and in the vicinity of contact lines, we also

found helpful the books by Israelachvili [69], Starov, Velarde, and Radke [107], and

Derjaguin, Churaev, and Muller [40].

The literature on equilibrium capillary surfaces and the related Plateau problem of

area-minimizing surfaces is classical and vast. We refer to, e.g., the books of Finn [52]

and Giusti [60].

Recognition of the incompatibility of moving contact lines and no-slip boundary

conditions for the Navier-Stokes equations dates back several decades. For early

work, we refer the reader to, e.g., Huh and Scriven [68], Dussan V. and Davis [45],

Dussan V. [43,44] and references therein. A nice exposition of these early results is

given in §2.2 of Snoeijer and Andreotti [105]. For a survey of more recent results, we

recommend Lauga, Brenner, and Stone [75].
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For macroscopic models of liquid-vapor-solid systems in the case of viscous fluids,

the mathematical state of the art appears to be the sharp interface models of Ren

and E [97–99] and the diffuse interface model (with what they call generalized Navier

boundary conditions) of Qian, Wang, and Sheng [92–94]. Roughly speaking, both

prescribe the velocity at the triple junction as a function of the contact angle. In the

simplest case, in [97], the authors propose

v = −1

k
(cos θ − cos θs) (4.9)

for a suitable constant k. This guarantees dissipation of energy. However, this approach

seems unsuited for inviscid models for two reasons. First, we expect conservation

of energy and, second, we may not prescribe the contact line velocity in any case.

Furthermore, for inviscid fluids, there is no reason to believe the contact angle should

depend only locally on the velocity in the general case. For a specific geometry, a

(complicated!) local relation holds approximately in the case of Stokes flow (the high

Reynolds number limit) and low Capillary number, as derived by Cox using matched

asymptotic expansion [35]. For more recent work on this subject, we refer to, e.g.,

Eggers [48, 49] and Eggers and Stone [50]. However, we are not aware of any such

work for the inviscid (i.e., low Reynolds number) limit.

Many of the ideas in this chapter were inspired by a paper of Mellet [80] studying

dynamic solutions to thin film equations with constant-in-time but nonzero contact

angle. Mellet uses a singular perturbation approach to studying the Dirac measure.

We are not aware of any prior studies of liquid-vapor-solid systems using the full

incompressible Euler equations. Everything we could find assumed either that the

contact line does not move or prescribed the contact angle to be the equilibrium value.

As we shall see later on, these are precisely the cases in which no additional stresses

arise at the contact line.
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4.2 The static problem

To motivate the derivation of the augmented Young-Laplace equation in §4.3, and to

better understand its meaning, it helps to first look at the static problem. We briefly

review some physical concepts and laws related to this problem in §4.2.1, and then

elaborate on a variational approach to deriving those laws in §§4.2.2–4.2.3.

4.2.1 Review of concepts

We review here some standard concepts related to the static problem, based on Chapter

1 of de Gennes et al. [36].

We consider here systems where the fluids and the solid are entirely at rest. In

this case, the energy of the system consists of only the surface energies,

E =
∑
i

∫
Γi

γi dHn−1 . (4.10)

It is useful to introduce the spreading parameter S, defined by

S = γSV − (γSL + γ) . (4.11)

The interpretation is as follows: The surface energy per unit area of the solid-vapor

interface is γSV . If a unit area of this interface is covered by an infinitesimal layer of

liquid, then the change in surface energy of the system is given by −S. As de Gennes

et al. put it:

S = [Esubstrate]dry − [Esubstrate]wet . (4.12)

The point is that if S > 0, the totally wetting case, then it is energetically favorable

for the liquid to cover as much of the solid as it can. (In practice, a finite-volume

liquid can of course not become infinitesimally thin. At latest on molecular length

scales, other effects (such as gravity or disjoining pressure) will counterbalance the
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spreading and lead to some finite equilibrium height.)

In the opposite case S < 0, the partially wetting case, it is energetically favorable

for a thin layer of liquid to minimize its contact with the solid surface. It will form a

droplet, stopping its retreat from the solid surface only once doing so increases by too

much the energy of its curved interface with the vapor.

Two laws characterize the liquid’s equilibrium shape: First, the Young-Laplace law

specifying that the mean curvature H of the liquid-vapor interface Γ is proportional

the pressure difference between vapor and liquid at the interface,

γH = JpK , (4.13)

and second, the Young-Dupré law stating that the static contact angle θs is given by

cos θs =
γSV − γSL

γ
. (4.14)

These laws can be derived via energy considerations or force balances—we refer to the

aforementioned references. We will give a slightly different derivation in §4.2.3.

Remark 4.2.1. In the following, even when working in the dynamic setting, we will

typically write expressions involving γSL − γSV in terms of γ and cos θs using (4.14).

Instead of cos θs, it is also common in the literature to use S. The relation between

S < 0 and cos θs is simply

S = γ(cos θs − 1) . (4.15)

Convention 4.2.2. For the rest of this chapter, we work in the partially wetting

regime. That is, we assume S < 0. Then θs is a well-defined angle, 0 < θs < π. (Some

of the calculations remain valid if we eliminate θs in favor or S using (4.15). See

Remark 4.3.4 for an example.)
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4.2.2 Variational approach for the small-angle approximation

Let us demonstrate now a neat variational calculus technique for deriving PDE’s and

boundary conditions in free-boundary problems. We first encountered a version of

this idea in Mellet [80], but similar calculations occur in a number of earlier papers as

well, and we are not sure of the exact origin. In any case, we refer to Mellet’s paper

for a more rigorous discussion of these toy calculations using a singular perturbation

approach.

Let us work for simplicity with one-dimensional “surfaces,” and consider the

problem of minimizing the energy of a droplet on a plane y = 0 subject to a volume

constraint. Let us further assume γSV = γSL = 0, γ = 1, and that the surface of the

droplet can be represented by a graph (x, η(x)) where |ηx|2 � 1. (We will drop some

of these assumptions in the next section §4.2.3, but it is instructive to look at this

simplified case first, as the calculations are easier to follow.)

The surface energy of the system is simply the surface area of the liquid-vapor

interface. We write it as

E(η) =

∫ ∞
−∞

√
1 + |ηx|2Θ(η(x)) dx , (4.16)

where Θ denotes the Heaviside step function,

Θ(y) =


1 , y > 0 ,

0 , y ≤ 0 ,

(4.17)

whose distributional derivative is the Dirac distribution,

d

dy
Θ(y) = δ(y) . (4.18)

The use of Θ(η) here serves as a way of expressing the indicator function for the
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wetted region. Under the small-angle approximation |ηx|2 � 1, we have

√
1 + |ηx|2 ≈ 1 +

1

2
|ηx|2 . (4.19)

As an aside, note also that the mean curvature operator is then approximately just

the Laplacian of η,

H(η) = ∂x

(
ηx√

1 + η2
x

)
≈ ηxx . (4.20)

Oversimplifying a bit, the approximate variational problem we consider, then, is to

minimize the following functional,

J(η) =

∫ ∞
−∞

(1 +
1

2
|ηx|2)Θ(η) dx− λ

∫ ∞
−∞

η dx , (4.21)

among nonnegative functions η ∈ Ḣ1(R). The Lagrange multiplier λ was introduced

to enforce the volume constraint. Since ηx = 0 a.e. on {η = 0}, we can rewrite the

functional as

J(η) =

∫ ∞
−∞

Θ(η) dx+

∫ ∞
−∞

1

2
|ηx|2 dx− λ

∫ ∞
−∞

η dx . (4.22)

Now it is easy to compute that minimizers must formally satisfy

0 =
δJ

δη
= δ(η)− ηxx − λ . (4.23)

In particular, this tells us that on the free surface {η > 0}, we have ηxx = λ. But

what does the Dirac measure signify? It turns out it tell us something about boundary

conditions on the set ∂{η > 0}. To see this, let us suppose η(x) = 0 on some interval

(−κ, 0] (with κ > 0) and η(x) > 0 on some interval (0, κ). Then multiplying (4.23) by
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η′(x) and integrating over [−ε, ε] with 0 < ε < κ, we find

0 =

∫ ε

−ε

(
ηxδ(η)− ηxηxx − ληx

)
dx (4.24)

=

∫ ε

−ε

(
∂x[Θ(η)]− 1

2
∂xη

2
x

)
dx− λη(ε) (4.25)

= Θ(η(ε))−Θ(η(−ε))− 1

2

(
|ηx(ε)|2 − |ηx(−ε)|2

)
− λη(ε) . (4.26)

By our assumptions on η, Θ(η(ε)) = 1 while Θ(η(−ε)) = 0 and ηx(−ε) = 0. It follows

that

0 = 1− 1

2
|ηx(ε)|2 − λη(ε) . (4.27)

Taking the limit ε → 0, the rightmost term vanishes and we obtain the boundary

condition

1

2
|ηx(0+)|2 = 1 . (4.28)

Thus, at least formally, equation (4.23) really encodes both a PDE satisfied by the

free surface as well as boundary conditions on the contact points with the solid,


ηxx = λ , on {η > 0} ,

1

2
|ηx|2 = 1 , on ∂{η > 0} .

(4.29)

Remark 4.2.3. Our calculations here served only to illustrate the derivation of boundary

conditions through variational means. In fact, the variational approach is also well-

suited to studying the regularity of minimizers, especially in two and three dimensions.

Alt and Caffarelli [2] proved bounds on how large the set of singularities of the

free surfaces can be. In particular, they were able to prove full regularity for two-

dimensional surfaces. For the three-dimensional case and a survey of other more recent

results, we refer to Caffarelli, Jerison and Kenig [14]. For a related, more general

two-phase problem, we refer to Alt, Caffarelli and Friedman [3] and a different paper
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by Caffarelli, Jerison and Kenig [13].

4.2.3 Variational approach for the capillary problem

In this section, we repeat the calculations of the previous section, but without the

small-angle approximation and for general γ, γSL, γSV in the partially wetting regime.

This will give rise to both the Young-Laplace law on the liquid-vapor interface and

Young’s contact angle condition. (Similar but less detailed calculations appear in

Caffarelli and Friedman [12].)

Let us consider a capillary droplet on a plane with partially wetting contact angle4

0 < θs <
π
2
. We parametrize the height of the droplet by η(x). By (4.14), we have

γ cos θs = γSV − γSL. Thus, the capillary energy relative to the absence of the droplet

may be written as

E(η)− E0 =

∫ ∞
−∞

((
γ
√

1 + η2
x + γSL

)
− γSV

)
Θ(η) dx (4.30)

=

∫ ∞
−∞

(
γ
√

1 + η2
x − γ cos θs

)
Θ(η) dx . (4.31)

Now minimize among {η ≥ 0} subject to a volume constraint
∫
η dx = V . That is,

minimize

J(η) =

∫ ∞
−∞

(
γ
√

1 + η2
xΘ(η)− γ cos θsΘ(η)− λη

)
dx (4.32)

=

∫ ∞
−∞

(
γ(
√

1 + η2
x − 1) + γ(1− cos θs)Θ(η)− λη

)
dx , (4.33)

where we introduced a Lagrange multiplier λ. Formally, this gives5

0 =
δJ

δη
= −γH + γ(1− cos θs)δ(η)− λ . (4.34)

4Really, all of this applies to contact angles π
2 ≤ θs < π as well, but then we need to parametrize

the interface in a different way. For the sake of exposition, we restrict to a suboptimal angle range.
5Instead of γ(1− cos θs), we could also write −S where S is the spreading parameter. See (4.15).
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Note that γH = −λ is the Young-Laplace law as expected, but also there appears a

singular measure δ(η) that (as we will see in a moment) encodes the contact angle

constraint. We will encounter this again in our augmented Young-Laplace law (4.62)

for the dynamic case.

Let us show now how (4.34) gives rise to the static boundary condition cos θ = cos θs.

Suppose, without loss of generality, that our solution touches the surface at x = 0.

That is, η(x) = 0 for x ∈ (−ε, 0] and η(x) > 0 for x ∈ (0, ε) for some ε > 0. Using the

formula for the mean curvature of a graph (4.6), we have

γH = γ∂x(A
′(ηx)) = γ(1− cos θs)δ(η)− λ , (4.35)

where

A(z) =
√

1 + z2 − 1 , (4.36)

A′(z) =
z√

1 + z2
. (4.37)

Multiplying by ηx and integrating from −δ to δ (with 0 < δ < ε), we find

γ

∫ δ

−δ
ηx∂x(A

′(ηx)) dx = γ(1− cos θs)

∫ δ

−δ
ηxδ(η) dx− 2λδ (4.38)

= γ(1− cos θs) Θ(η)
∣∣δ
−δ − 2λδ (4.39)

= γ(1− cos θs)− 2λδ (4.40)

δ→0−−→ γ(1− cos θs) . (4.41)
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Since ηxxA
′(ηx) = ∂x[A(ηx)], integrating by parts the left-hand side, we obtain

∫ δ

−δ
ηx∂x(A

′(ηx)) dx = γ
[
ηxA

′(ηx)− A(ηx)
]δ
−δ (4.42)

= γ

(
η2
x√

1 + η2
x

− (
√

1 + η2
x − 1)

)∣∣∣∣∣∣
δ

(4.43)

= γ

1− 1√
1 + η2

x

∣∣∣∣∣
δ

 (4.44)

δ→0−−→ γ (1− cos θ) . (4.45)

Thus cos θ = cos θs. To summarize, the single equation (4.34) formally gives rise to


γH = −λ , on {η > 0} ,

cos θ = cos θs , on ∂{η > 0} .
(4.46)

That is, it encodes both the Young-Laplace law of constant mean curvature and the

contact angle boundary condition.

4.3 The dynamic problem

Now we turn our attention to the dynamic problem. For inviscid fluids, we propose

an analog of the static equation (4.34) for the dynamic problem, namely the following

augmented Young-Laplace law (4.62),

JpK = γH + γ
cos θs − cos θ

sin θ
δΣ , on Γ . (4.47)

We give two “derivations” of this equation:

First, as described in §§4.3.1–4.3.3, if we start from the incompressible Euler

equations and standard boundary conditions, then demanding energy conservation
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leads naturally to the augmented Young-Laplace law as the remaining boundary

condition for the pressure difference across the interface Γ.

Second, we show in §4.3.4 that introducing a half-plane solid into Zakharov’s

Hamiltonian formulation of the water waves problem also leads to the augmented

Young-Laplace law. This is less general than the first approach, but perhaps a little

closer to the variational spirit of §4.2.3.

4.3.1 Standard PDE and kinematic boundary conditions

Away from the interfaces, we assume the fluids satisfy the incompressible Euler or

Navier-Stokes equations for all time,


ρ(∂tu+ u · ∇u) = div T , in Ω,

div u = 0 , in Ω,

(4.48)

where the stress tensor T is given by

T = −pI + 2µD, D =
1

2
((∇u) + (∇u)>) . (4.49)

We will also assume throughout that the solid is impermeable,

u · n = 0 , on ΓSL and ΓSV , (4.50)

and that the interface ΓLV does not separate,

JuK · n = 0 , on ΓLV . (4.51)

The normal velocity of ΓLV is thus

V = uL · n = uV · n = ū · n , (4.52)
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and the nontangential velocity of the triple junction is v νSL.

So far none of our assumptions are controversial. However, they are not complete.

For the Euler equations, one more boundary condition must be specified on ΓLV ,

and for the Navier-Stokes equations several more are required. To fill in the missing

boundary condition for the inviscid case, we look to energy conservation.

4.3.2 Time deriative of energy

Ren and E [98] use thermodynamic principles to derive boundary conditions for moving

contact lines in the case of viscous fluids. We will follow a similar approach here, but

for inviscid fluids. This means we will look for the “simplest” boundary condition

that leads to conservation of energy. Bear in mind that the inviscid case differs from

the viscous case in two essential ways:

1. As there is no friction in the inviscid model, we seek exact conservation of energy,

not just dissipation of energy.

2. In the inviscid case, there are fewer degrees of freedom in prescribing boundary

conditions.

Let us assume that the orientation and center of mass of the solid are fixed. Then the

total energy of the system consists of the kinetic energy of the fluids plus the surface

energies,

E =

∫
Ω

1

2
ρ|u|2 dHn +

∑
i

∫
Γi

γi dHn−1 =: T + U . (4.53)

Let us formally compute dE
dt

subject to (4.48), (4.50), (4.51), and see what constraints

this imposes on the remaining choice of boundary conditions.

Using the transport identities (4.7) and (4.8), we find

d

dt
T =

∫
Ω

∂t(
1

2
ρ|u|2) dHn −

∫
Γ

s
1

2
ρ|u|2

{
V dHn−1 , (4.54)

116



and

d

dt
U = −

∫
Γ

γHV dHn−1 +

∫
Σ

∑
i

γi((v νSL) · νi) dHn−2 . (4.55)

Multiplying (4.48) by u and integrating over Ω, we find

∫
Ω

∂t(
1

2
ρ|u|2) dHn = −

∫
Ω

1

2
ρu · ∇|u|2 dHn +

∫
Ω

u · div T dHn (4.56)

=

∫
Γ

s
1

2
ρ|u|2

{
V dHn−1 −

∫
Γ

Ju · T K · n dHn−1 −
∫

Ω

µ|∇u|2 dHn ,

(4.57)

where we integrated by parts both integrals and used div u = 0. Next we observe,

using νSV = −νSL, νSL · νLV = cos θ, and γSV − γSL = γ cos θs, that

∑
i

γi(v νSL) · νi = v(γSL − γSV + γ cos θ) = γv(cos θ − cos θs) . (4.58)

Putting this all together, we have

d

dt
E = −

∫
Ω

µ|∇u|2 dHn −
∫

Γ

(
Ju · T K · n+ γHV

)
dHn−1

+

∫
Σ

γv(cos θ − cos θs) dHn−2 .

(4.59)

4.3.3 Energy conservation in the inviscid case and the aug-

mented Young-Laplace law

Convention 4.3.1. From here on out we assume our fluids are inviscid, i.e., µ ≡ 0.

If µL = µV = 0, then T = −pI and so Ju · T K · n = − JpKV . A first look at (4.59)

suggests that we should take JpK = γH as the final boundary condition on Γ, in order

to eliminate the integral over Γ. This is the Young-Laplace equation. However, if we
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do this, then there is still the integral over Σ left,

d

dt
E =

∫
Σ

γv(cos θ − cos θs) dHn−2 , (4.60)

and so we cannot expect energy to be conserved unless v = 0 (the triple junction does

not move) or θ = θs (the contact angle is fixed at its equilibrium value).

The problem with using the plain Young-Laplace law as the boundary condition is

that it only accounts for the stresses due to change in the surface energy of ΓLV , and

not for the stresses due to change of the surface energy of ΓSL and ΓSV .

To see how to incorporate these missing stresses, we recall that V = v sin θ on Σ

(see (4.5)), and use this to rewrite (4.59) for µ ≡ 0 as

d

dt
E =

∫
Γ

V

(
JpK− γH + γ

cos θ − cos θs
sin θ

δΣ

)
dHn−1 , (4.61)

where δΣ denotes a Dirac measure on Γ concentrated on Σ. Written in this way, it is

clear that energy will be conserved if we take the following augmented Young-Laplace

law as our boundary condition:

JpK = γH + γ
cos θs − cos θ

sin θ
δΣ , on Γ . (4.62)

We propose this as the natural dynamic analog of the equation (4.34) that we found

in the static case using the variational approach. There is a singular measure δΣ in

the boundary condition, but that should not frighten us. We have already seen in the

static case that this innocuously encodes information about the contact line.

To summarize, the full system we propose for the case of inviscid fluids and a fixed
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and non-rotating solid is:



ρ(∂tu+ u · ∇u) = −∇p , in Ω,

div u = 0 , in Ω,

u · n = 0 , on ΓSL and ΓSV ,

JuK · n = 0 , on Γ,

JpK = γH + γ
cos θs − cos θ

sin θ
δΣ , on Γ.

(4.63)

Remark 4.3.2. We wish we could go further and split (4.62) into the Young-Laplace

law and a statement about the contact points, as we did for the static case in §4.2.3.

Unfortunately, we cannot directly follow the same procedure, since JpK is not defined

off of Γ. We discuss the issue of making sense of the Dirac measure more in §4.6.

Remark 4.3.3. Using

cos θs = cos((θ − θs)− θ) = cos θ cos(θ − θs) + sin θ sin(θ − θs) , (4.64)

we find

cos θs − cos θ

sin θ
= cot θ

(
cos(θ − θs)− 1

)
+ sin(θ − θs) (4.65)

= (θ − θs)−
1

2
(cot θ)(θ − θs)2 +O

(
(θ − θs)3

)
. (4.66)

Remark 4.3.4. For the case of total wetting, the calculations above are still valid, but

we need to write them in terms of S instead of cos θs. In that case, (4.62) becomes

JpK = γH +
S + γ(1− cos θ)

sin θ
δΣ , on Γ . (4.67)

Then there is no θ ∈ (0, π) that makes the coefficient of the Dirac measure vanish.

The coefficient only vanishes in the limits θ → 0 and θ → π.
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4.3.4 Hamiltonian formulation of water waves problem

In further support of our augmented Young-Laplace law (4.62), we show in this section

how it arises in a simple modification of a classical problem that is known to have a

Hamiltonian structure. Namely, due to Zakharov in 1968 [118], there is a Hamiltonian

formulation for the water waves problem. This problem concerns inviscid irrotational

flow in an infinitely deep ocean of unbounded extent, subject to gravity, and with

a free surface, subject to surface tension, that is representable as a graph. To keep

notation simple, we will do the calculations here only for the two-dimensional case,

i.e., one-dimensional interfaces, but they are easy to generalize to higher dimensions.

The idea is this: We start from the setup of the water waves problem, but replace

the x < 0 half-plane by an infinite solid. The liquid is now merely a “half-ocean”

residing in the x > 0 half-plane, with the vapor filling the space above it. See Figure 4.3.

η(x, t)

x = 0
. . .

...

Figure 4.3: Water-waves problem for half-ocean

We write η(x, t) for the height of the free surface and ϕ(x, y, t) for the velocity

potential. The trace of ϕ on the free surface is

φ(x, t) = ϕ(x, η(x, t), t) . (4.68)
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Since we are considering potential flow, ϕ is determined uniquely from φ via


−∆ϕ = 0 , (y < η(x), x > 0)

ϕ = φ , (y = η(x), x > 0)

∂nϕ = 0 . (x = 0)

(4.69)

The condition ∂nϕ = u · n = 0 on x = 0 is just the impenetrability of the solid

half-plane.

We take as our Hamiltonian H = T + U where

T =

∫ ∞
0

∫ η

−∞

1

2
|∇ϕ|2 dy dx , (4.70)

U =

∫ ∞
0

(
1

2
gη2 + γ(

√
1 + η2

x − 1)− (γ cos θs)η(x, t)δ(x)

)
dx . (4.71)

The only new term compared to Zakharov’s system is the rightmost one in the potential

energy. This term comes from observing that γ cos θs = γSV −γSL is the surface energy

per unit length associated with decline in height of the water at x = 0.

Zakharov showed that the water waves problem is Hamiltonian with canonical

variables η and φ. That is, the evolution equations for η and φ may be obtained from

variations of H,

∂tη =
δH
δφ

, ∂tφ = −δH
δη

. (4.72)

Repeating Zakharov’s computations for the half-ocean problem, the augmented Young-

Laplace law makes another appearance, as we now show.

Proposition 4.3.5. For the half-ocean problem, equations (4.72) are on y = η(x),

∂tϕ+
1

2
|∇ϕ|2 + gη = γH + γ(cos θs − cos θ)δ(x) , (4.73)

∂tη = (ϕy − ηxϕx)|y=η = ∂nϕ|y=η

√
1 + η2

x . (4.74)
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Proof. First, let us compute δH
δφ

. Since U is independent of φ, we need only look at T .

Given a variation δφ, we can obtain δϕ from δφ via (4.69), just as ϕ is obtained from

its trace φ. Using δϕ, we compute:

δT =

∫ ∞
0

∫ η

−∞
∇ϕ · ∇(δϕ) dy dx (4.75)

= −
∫ ∞

0

∫ η

−∞
(−∆ϕ)δϕ dy dx+

∫
{x=0,y<η}

(∂nϕ)δϕ dy

+

∫
{x>0,y=η(x)}

(∂nϕ)δϕ ds .

(4.76)

The first two terms vanish since −∆ϕ = 0 and ∂nϕ = 0 on x = 0 by (4.69). For the

third term, we observe that ds =
√

1 + η2
x dx to conclude

δT =

∫ ∞
0

∂nϕ|y=η(x) δφ(x)
√

1 + η2
x dx , (4.77)

and hence

δH
δφ

=
δT

δφ
= ∂nϕ|y=η

√
1 + η2

x . (4.78)

Since

∂nϕ = n · ∇ϕ =
(−ηx , 1) ·

(
ϕx , ϕy

)√
1 + η2

x

=
ϕy − ηxϕx√

1 + η2
x

, (4.79)

this may also be written as

δH
δφ

= (ϕy − ηxϕx)
∣∣
y=η(x)

. (4.80)

This establishes the second equation in the proposition.

Now let us look at the variations with respect to η. For the variation of the
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potential energy, we compute, (assuming δη → 0 as x→∞)

δU =

∫ ∞
0

(
gη − (γ cos θs)δ(x)

)
δη dx+ γ

∫ ∞
0

ηx√
1 + η2

x

(δη)x dx (4.81)

=

∫ ∞
0

gη − (γ cos θs)δ(x)− γ ηx√
1 + η2

x

δ(x)− γ ∂
∂x

(
ηx√

1 + η2
x

) δη dx .

(4.82)

Observing that

− ηx√
1 + η2

x

= cos θ (at x = 0) and
∂

∂x

(
ηx√

1 + η2
x

)
= H , (4.83)

we arrive at

δU

δη
= gη + γ(cos θ − cos θs)δ(x)− γH . (4.84)

The variation of the kinetic energy is a little more complicated since it involves

also ϕ, and a variation δη also induces a variation δϕ via (4.69), even when φ is not

changed. With this in mind, we compute

δT =

∫ ∞
0

1

2
|∇ϕ|2δη dx+

∫ ∞
0

∫ η

−∞
∇ϕ · ∇(δϕ) dy dx . (4.85)

Using ∆ϕ = 0 and ∂nϕ = 0 on x = 0, we may integrate the second integral by parts

to get

δT =

∫ ∞
0

1

2
|∇ϕ|2δη dx+

∫ ∞
0

[(∂nϕ)δϕ]
∣∣
y=η

√
1 + η2

x dx . (4.86)

Thanks to (4.69), we have6 δϕ = −(∂yϕ)δη on y = η. To see this, note that varying η

but holding φ fixed, we have

(ϕ+ δϕ)(x, η(x) + δη(x)) = ϕ(x, η(x)) = φ(x) ; (4.87)

6This is stated with an incorrect sign in Zakharov’s paper.
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hence, by formal infinitesimal calculation,

δϕ(x, η(x)) = δϕ(x, η(x) + δη(x)) = ϕ(x, η(x))− ϕ(x, η(x) + δη(x)) (4.88)

= −δη(x)ϕy(x, η(x)) . (4.89)

Furthermore, we have shown

∂tη =
δH
δφ

=
√

1 + η2
x ∂nϕ|y=η . (4.90)

Thus,

δT =

∫ ∞
0

[
1

2
|∇ϕ|2 − (∂tη)ϕy

]
δη dx , (4.91)

and so

δT

δη
=

1

2
|∇ϕ|2 − (∂tη)ϕy . (4.92)

Combining (4.84) and (4.92), we thus find that

∂φ

∂t
= −δH

δη
= (∂tη)ϕy −

1

2
|∇ϕ|2 − gη + γH + γ(cos θs − cos θ)δ(x) . (4.93)

Finally, since ∂tφ = ∂tϕ+ (∂tη)ϕy, we may rewrite this in terms of ϕ, as stated in the

proposition.

Remark 4.3.6. For comparison, the Euler equation for u = ∇ϕ (and ρL = 1, ρV = 0)

reads

0 = ∂t∇ϕ+∇ϕ · ∇∇ϕ+∇p+ gŷ = ∇(∂tϕ+
1

2
|∇ϕ|2 + gy + p) , (4.94)

and hence on y = η(x),

p = −(∂tϕ+
1

2
|∇ϕ|2 + gη) + C(t) . (4.95)

124



As usual, we view the spatially constant term C(t) as the atmospheric pressure patm

at the water surface, and thus we may interpret the ∂tϕ equation in Proposition 4.3.5

as specifying the pressure difference at the free surface,

JpK = patm − p = γH + γ(cos θs − cos θ)δ(x) . (4.96)

Remark 4.3.7. Equation (4.96) is almost the same as the augmented Young-Laplace

equation (4.62) we found earlier. To reconcile, note that δΣ is a Dirac mass relative to

the hypersurface measure dHn−1 on Γ. Thus, in (4.96) we should change variables

from horizontal distance x to arc length s. Since

δ(x) = δ(s)
ds

dx
= δ(s)

√
1 + η2

x =
δ(s)

sin θ
, (4.97)

we then recover (4.62) exactly.

4.4 Compatibility with the static case

As a compatibility check for the augmented Young-Laplace law (4.62) with known re-

sults, we show in this section that static solutions to the dynamic inviscid system (4.63)

indeed satisfy the Young-Laplace law and the correct contact angle condition, at least

in the irrotational case.

4.4.1 On irrotational equilibrium solutions

Let us consider the inviscid system (4.63), and look for steady irrotational solutions.

Under the irrotational assumption, we have u = ∇ϕ for some velocity potential ϕ,
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and the system may be rewritten as (see Remark 4.3.6)



ρ(∂tϕ+
1

2
|∇ϕ|2) = γH + γ

cos θs − cos θ

sin θ
δΣ on Γ,

−∆ϕ = 0 , in Ω,

∇ϕ · n = 0 , on ΓSL and ΓSV ,

J∇ϕK · n = 0 , on Γ.

(4.98)

Under the steadiness assumption, the interface does not move, and so we in fact have

u · n = ∇ϕ · n = 0 on Γ, and not just J∇ϕK · n = 0. But then ϕ satisfies


−∆ϕ = 0 , in Ω,

∂nϕ = 0 , on ∂Ω.

(4.99)

It follows that

ϕ(x, t) = CL(t)χΩL(x) + CV (t)χΩV (x) (4.100)

for some spatially constant functions CL and CV . (We restrict ourselves here to

looking for solutions where both ΩL and ΩV are connected. For other solutions (such

as multiple droplets), a separate spatially constant function may be required for each

connected component.) From the first equation in (4.98), we then have

ρLC
′
L(t) = ρVC

′
V (t) = γH + γ

cos θs − cos θ

sin θ
δΣ . (4.101)

Since the right-hand side is independent of time, we must have CL
′′(t) = CV

′′(t) = 0,

and hence

CL(t) = ALt+BL , CV (t) = AV t+BV , (4.102)
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for some constants AL, BL, AV , BV . Since ρLC
′
L(t) = ρVC

′
V (t), we further know that

AL and AV are related to each other via

ρLAL = ρVAV = γH + γ
cos θs − cos θ

sin θ
δΣ . (4.103)

Since the left-hand sides are constant along Γ, the coefficient of δΣ must vanish, i.e.,

the expected contact angle condition holds,

cos θs = cos θ . (4.104)

What remains is the Young-Laplace law of constant mean curvature,

γH = ρLAL = ρVAV . (4.105)

4.4.2 Example: half-plane solid in two dimensions

To get a little sense of the meaning of the constants AL and AV , let us specialize now

to the two-dimensional case where the solid occupies the half plane y < 0.

When AL = AV = 0, the mean curvature vanishes and so the liquid-vapor interface

is a straight line. Thanks to the contact angle condition, the line must meet the solid

at angle θs. See Figure 4.4.

θs

ΩL

Figure 4.4: Wedge solution for half-plane solid in two dimensions.

Otherwise, the interface must be a spherical cap meeting the solid at angle θs and
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of radius

R =
1

|H|
=

γ

ρL|AL|
=

γ

ρV |AV |
. (4.106)

The sign of AL and AV then determines whether the liquid is in the interior of the

spherical cap (negative sign) or exterior to the spherical cap (positive sign). See

Figure 4.5.

θs θs
ΩL

θs θs

ΩV

ΩL

Figure 4.5: Liquid and vapor droplet solutions for half-plane solid in two dimensions.

4.5 On modeling long-range interactions

As pointed out in §4 of de Gennes et al. [36] (and also emphatically in §1 of Starov,

Velarde and Radke [107]), using macroscopic quantities like pressure and surface

tension is really only justified if the length scales of interest are significantly larger

than the length scale of the molecular long-range interactions. For example, if the

long-range interactions decay over a length scale r0, then the separation δ between

the interfaces should really be of order δ � r0. However, the assumption δ � r0 is

clearly violated in two common scenarios: (1) in thin films, especially totally wetting

films; and (2) in the vicinity of triple junctions.

Since we are particularly interested in triple junctions and contact angles, it seems

worthwhile to think about how to add long-range effects into our inviscid model.

Again, we find it conceptually useful to study the inviscid rather than the viscous case.

Viscosity introduces the further complication of somehow needing to violate non-slip

128



boundary conditions at distances close to the boundary (usually done by introducing

another “slip” length scale).

4.5.1 Disjoining pressure for thin films of uniform thickness

In the thin film literature, it is common to add an ad hoc disjoining pressure Π(h)

into the augmented Young-Laplace equation. To illustrate this, let us consider the

following example, adapted with modifications from §10.2 in Israelachvili [69]. A thin

film of liquid in vacuum covers a solid that fills the infinite half-space z < 0, and

we would like to incorporate interactions between liquid and solid molecules into our

model. Let us assume an attractive, additive interaction potential between liquid and

solid molecules of the form

W (r) = −C
r6
, (4.107)

where r denotes the distance between the molecules; C is a physiochemically determined

constant; and the exponent 6 is for van der Waals interactions. (For more sophisticated

models and for explanations of the Hamaker constant C, we refer to §§10–11 in

Israelachvili [69].) Then the net interaction energy of a liquid molecule at height z = h

with the solid is

U(h) = −
∫ 0

−∞

∫ ∞
−∞

∫ ∞
−∞

CρSN
|x2 + y2 + (h+ z)2|3

dx dy dz = −πCρ
S
N

6h3
, (4.108)

where ρSN denotes the number of molecules per unit volume of the solid. Multiplying

by the corresponding liquid number density ρLN gives us then the energy per unit

volume in the liquid due to the long-range interactions,

e(h) = −πCρ
S
Nρ

L
N

6h3
. (4.109)
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If we parametrize the liquid-vacuum interface by (x, η(x)), then there is an extra

energy term of the form

EW =

∫ ∞
−∞

∫ η(x)

0

e(h) dh dx , (4.110)

where we ignore for a moment the singularity in e as h → 0. If we now redo the

derivation of the static augmented Young-Laplace equation in §4.2.3, then there is an

extra term −Π := δEW
δη

= e(η) in the equation:

0 = −γH + γ(1− cos θs)δ(η)− λ− Π(η) . (4.111)

Away from the interface, this simplifies to

γH + Π(η) = −λ , (η > 0) (4.112)

and such an equation is what is usually referred to as an augmented Young-Laplace

law in the literature. The function Π(h) is for historical reasons called a disjoining

pressure. Depending on its sign, the term conjoining pressure may also be used.

However, we cannot incorporate Π = −e as specified in (4.109) into our continuous

model, since Π(h) diverges to −∞ as h→ 0. Using, say, a Lennard-Jones potential

instead of just van der Waals interactions does not help either because then the

pressure diverges to +∞ as h → 0. The problem is that the derivation of e above

was done using molecular potentials. However, in our continuous, sharp interface

model we have essentially already taken the limit to zero of the molecular length scale,

summarizing everything that happens at and beneath that length scale by surface

tension.

A resolution is given in §4 in de Gennes et al. [36] for the simple scenario of a

thin liquid film of height h covering the solid. In this case the energy per unit area of
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wetted surface is

E(h) = γSL + γLV + PW (h) , (4.113)

where dPW
dh

= −ΠW . In the limit h → 0, we should recover the dry energy per unit

area of the solid, i.e., E(0) = γSV . Hence PW should satisfy

PW (0) = γSV − (γSL + γLV ) = S . (4.114)

(We discussed the spreading parameter S in §4.2.1.) In the other direction, we demand

PW (+∞) = 0, since for large h we should recover the pure surface tension model, since

the long-range interactions become negligible. These limits for PW (0) and PW (+∞)

tell us how to sensibly modify the original diverging e(h) in favor of one that is

compatible with our macroscopic model. For example, if the signs of C and S are the

same, we could take7

PW (h) =
S

1 +

(
h

h0

)2 . (4.115)

This satisfies the correct boundary conditions, PW (0) = S and PW (+∞) = 0. Fur-

thermore, we have

− d

dh
PW ≈

2h2
0S

h3
, for h� h0 . (4.116)

So for h0 suitably chosen, we can match this for large h with the formula (4.109) for

Π(h) = −e(h).

This provides an acceptable resolution for, say, the study of thin films in equilibrium,

and a variety of specific forms of Π(h) have been proposed in the literature, depending

on the nature of the molecules involved.

7The functional form given here is just an example chosen to simplify exposition.
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4.5.2 Disjoining pressure near triple junctions

The form Π(h) for the disjoining pressure was derived under the simplified assumption

of a thin film of uniform thickness. In general, Π depends nonlocally on the geometry

of the problem and cannot accurately be approximated by a local function of the form

Π(h) near the triple junction.

The most advanced work to address this problem appears to be that of Wu

and Wong [116]. (They build upon earlier work by Hocking [63] and Miller and

Ruckenstein [81]. See also Yi and Wong [117] for an extension of these ideas to

Lennard-Jones potentials.) They compute the van der Waals potential due to all

possible molecular interactions between solid, liquid, and vapor molecules inside an

infinite wedge of liquid on a planar solid, and arrive at a slope-dependent disjoining

pressure Π(h, hx). All of this is derived for thin films and under a small-angle

approximation.

Unfortunately, parts of their argument do not easily generalize. We would propose

instead to study this issue along the following lines: Let us assume the molecular

length scale has already been dealt with somehow, leaving us with bounded, decaying,

additive interaction potentials Φij(r), where r denotes distance and Φij specifies

energy per unit volume of material i and per unit volume of material j. Replacing for

simplicity the vapor by a vacuum, the potential energy of the system is

E − E0 =

∫
ΩL

(∫
ΩS

ΦSL(|x− y|) dy +

∫
ΩL

ΦLL(|x− y|) dy

)
dx , (4.117)

where we subtracted off the dry energy E0. With the help of the transport identity (4.7),

we find that variation of the interface Γ by normal displacement δΓ leads to

δE =

∫
Γ

δΓ(x)

(∫
ΩS

ΦSL(|x− y|) dy + 2

∫
ΩL

ΦLL(|x− y|) dy

)
dHn−1(x) , (4.118)
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and hence a nonlocal pressure term at the interface,

δE

δΓ
(x) =

∫
ΩS

ΦSL(|x− y|) dy + 2

∫
ΩL

ΦLL(|x− y|) dy . (x ∈ Γ) (4.119)

Simplified local models of disjoining pressure could then be derived from this expression

using assumptions on the nature of Φ.

If we replace Φij(r) by the rescaled version 1
rn0

Φij(
r
r0

) and take the macroscopic

limit r0 → 0, then (4.119) becomes (assuming sufficient decay of Φij)

δE

δΓ
(x) =


λLL , (x ∈ Γ\Σ)

1
2
λSL +

θ

π
λLL , (x ∈ Σ)

(4.120)

where

λLL =

∫
Rn

ΦLL(|y|) dy , λSL =

∫
Rn

ΦSL(|y|) dy . (4.121)

This indicates that the effect of disjoining pressure far away from the solid is just

to modify the constant λ in (4.111), whereas close to the solid (and, in particular,

near the triple junction), there is a dependence on the contact angle θ. For a planar

solid, this suggests taking a disjoining potential of the form Π(h, θ) that interpolates

continuously between these two limit cases.

4.5.3 Can disjoining pressure explain the Dirac measure?

We can now clarify a misconception found in some of the mathematics literature.

Mellet [80] uses a singular perturbation approach of replacing the Heaviside function

Θ(h) (see §4.2.2) by a diffuse approximation Q( h
h0

) and studying the limit h0 → 0.

This then leads to a (small-angle) augmented Young-Laplace law of the form

ηxx(x) = λ+ P (η(x)) , P (h) =
1

h0

Q′(
h

h0

) . (4.122)
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As h0 → 0, we have P (h) → δ(h), and so we recover the version (4.23) we derived

earlier. Mathematically, this is a productive way of making sense of the Dirac mass

and is in widespread use for variational free-boundary problems.

Citing earlier work of Bertsch, Giacomelli and Karali [9], however, Mellet then

proceeds to vaguely claim that P (h) may be identified with disjoining pressure. This is

conceptually incorrect. The Dirac mass is a consequence of the surface tension model.

As defined in the physics literature, disjoining pressure adds additional long-range

interactions into the surface tension model. It does not modify the existing surface

tension terms, and, in particular, it does not replace the Dirac mass. See the full

augmented Young-Laplace law with disjoining pressure (4.111) above.

The correct physical interpretation of this mathematical technique is more akin to

a sharp interface limit of a diffuse interface model. Understanding this in detail could

be a fruitful research question.

4.6 Ideas and directions for future research

On the mathematics side, our understanding of the idealized model (4.63) is still

extremely limited and all the usual PDE questions remain open. Examples are:

Question 4.6.1. Are the equilibrium solutions stable? In particular, what happens

when the contact angle and contact line are perturbed slightly?

Question 4.6.2. Do there exist solutions with moving contact lines and dynamic

contact angles different from their equilibrium value?

Question 4.6.3. Do there always exist weak solutions? Are they unique?

Question 4.6.4. Is there a function space for which the Cauchy problem is locally

well-posed in time?

There are several difficulties to overcome before addressing these questions:
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First, we need to decide how to deal with the Dirac mass. Our critique of the

physical interpretation aside (see §4.5.3), we think some variant of Mellet’s singular

perturbation approach is likely to be a good way to mathematically make sense of

the Dirac measure in the idealized augmented Young-Laplace law (4.62). To decide

which variant to employ, it may be helpful to first further study the physics literature

and determine a suitable diffuse interface approximation whose sharp interface limit

gives rise to (4.62). (In the literature, diffuse interface models have, in particular,

been proposed for removing the viscous stress singularity. See, e.g., Pismen and

Pomeau [90], Qian, Wang, and Sheng [92–94], and references therein.)

Second, given the complicated geometry of the problem, it is nontrivial to even

come up with a good parametrization of the free interface and triple junction. For

two-fluid interfaces, a number of methods have been proposed, though most deal only

with irrotational fluids. We refer to Bardos and Lannes [7] for an overview. To handle

also triple junctions, perhaps a more geometric approach like that of Depner, Garcke,

and Kohsaka [39] would be more suitable. Their methods, however, would need to be

adjusted from mean curvature flow and prescribed contact angle to fluid equations

and dynamic contact angle.

Third, there is the question of what function spaces to consider. Presumably, we

may expect classical regularity away from the triple junction. However, the regularity

near the triple junction will necessarily be lower and could depend on the contact

angle. (We refer to, e.g., Lacave, Miot, and Wang [74] and references therein for some

discussion of fluids in fixed domains with corners.) A suitable notion of weak solution

would need to be devised.

Finally, we remark that the question of uniqueness of solutions is particularly

important. This could tell us how concerned we need to be about the exact choice

of singular perturbation approach adopted. In other words, to what extent do the

details of the molecular modeling affect the macroscopic limit?
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On the physics side, we already mentioned some current limitations of the model

in §4.1. Adding viscosity and allowing for freely moving solids, in particular, would

make the model far more useful for real-world applications. Viscous models already

are available in the literature (see §4.1.4 for references), but may not incorporate

the Young stresses due to non-equilibrium contact angles correctly. Integrating the

insights gained from the inviscid problem could lead to new and improved viscous

models.

In closing, we think a research program as sketched in this section could be fruitful

for both physics and mathematics. On the physics side, there is potential for new

insight and conceptual clarification that could help settle controversies surrounding

the modeling of liquid-vapor-solid systems. On the mathematics side, the system poses

many interesting challenges, whose resolution is likely going to require techniques

spanning several fields, such as mathematical fluid dynamics, geometric PDE’s, PDE’s

in singular domains, and variational calculus.
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Appendix A

Identities

For ease of reference, we collect here some definitions, conventions, and identities used

throughout the dissertation. With the exception of §A.3, all of this is standard and

may be found in many textbooks. We omit giving proofs or detailed references for

those sections.
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A.1 Differential identities

A.1.1 Vectors

For v, w differentiable vector fields and f, g differentiable scalar functions, we have

−∆v = curl curl v −∇ div v , (A.1)

div(fv) = f div v + v · ∇f , (A.2)

curl(fv) = f curl v +∇f × v , (A.3)

div(v × w) = (curl v) · w − v · (curlw) , (A.4)

curl(v × w) = div(w ⊗ v − v ⊗ w) , (A.5)

(curl v)× w = w · ∇v − (∇v)w = −((∇v)− (∇v)>)w , (A.6)

div(v ⊗ w) = ∂xj(v
jw) = v · ∇w + (div v)w . (A.7)

A.1.2 Matrices

Given a differentiable one-parameter family of invertible matrices A(t), we have

Dt log | detA| = Tr(A−1DtA) , (A.8)

DtA
−1 = −A−1(DtA)A−1 . (A.9)

Remark A.1.1. If A(t) is not necessarily invertible, we still have

Dt(detA) = Tr(C>DtA) , (A.10)

where C is the cofactor matrix of A. (C> is also known as the adjugate matrix of A.)

For invertible A(t) this reduces to (A.8) thanks to the formula (detA)A−1 = C>.
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A.1.3 Gauss-Green identities

Let Ω ⊂ Rn be a sufficiently regular domain and ν the outwards pointing normal on

∂Ω. Then for sufficiently regular u, v, we have (from Appendix C in Evans [51]),

∫
Ω

uxi dx =

∫
∂Ω

uνi dS , (A.11)∫
Ω

uxiv dx = −
∫

Ω

uvxi dx+

∫
∂Ω

uvνi dS , (A.12)∫
Ω

∆u dx =

∫
∂Ω

∂u

∂ν
dS , (A.13)∫

Ω

∇u · ∇v dx = −
∫

Ω

u∆v dx+

∫
∂Ω

u
∂v

∂ν
dS , (A.14)∫

Ω

u∆v − v∆u dx =

∫
∂Ω

(
u
∂v

∂ν
− v∂u

∂ν

)
dS , (A.15)∫

Ω

div u dx =

∫
∂Ω

u · ν dS . (A.16)

A.2 Fourier transform

We use the following normalization of the Fourier transform,

F [f ](ξ) = f̂(ξ) =

∫
Rn
e−ix·ξf(x) dx . (A.17)
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Under this convention, the following identities hold:

f(x) =
1

(2π)n

∫
Rn
eix·ξf̂(ξ) dξ , (A.18)

F [fg](ξ) =
1

(2π)n
(f̂ ∗ ĝ)(ξ) , (A.19)

F [f ∗ g](ξ) = f̂(ξ)ĝ(ξ) , (A.20)

F [∂xif ](ξ) = iξif̂(ξ) , (A.21)

F [xif ] = i∂ξi f̂(ξ) , (A.22)

F [f̂ ](ξ) = (2π)nf(−ξ) , (A.23)

F [f(Ax)](ξ) =
1

| detA|
f̂(A−>ξ) , (A.24)

F [f(λx)](ξ) = λ−nf̂(λ−1ξ) , (A.25)

F [f(x+ y)](ξ) = eiξ·yf̂(ξ) . (A.26)

The Parseval and Plancherel identities are:

∫
Rn
|f(x)|2 dx =

1

(2π)n

∫
Rn
|f̂(ξ)|2 dξ , (A.27)∫

Rn
f(x)g(x) dx =

1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ) dξ . (A.28)

A.3 Inverse of matrix using Levi-Civita symbol

We first learned of Corollary A.3.4 below from unpublished lecture notes of Con-

stantin [23], who aptly terms such calculations “index orgy.” Unfortunately, we were

unable to find a published proof and so orchestrating the dirty deed seems to have

fallen to us. The proof given here is a much expanded version of a sketch we found in

an online forum [84].
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Lemma A.3.1. The determinant of an n× n matrix A may be written as

detA =
1

n!
εi1···inεj1···jnAi1j1 · · ·Ainjn . (A.29)

Proof. We start from the well-known formula,

detA = εj1···jnA1j1 · · ·Anjn . (A.30)

Since permuting the rows of a matrix just changes its determinant by the sign of the

permutation, we may, for an arbitrary permutation σ ∈ Sn, rewrite (A.30) as

detA = (sgnσ)εj1···jnAσ(1)j1 · · ·Aσ(n)jn . (A.31)

Since sgnσ = εσ(1)···σ(n), writing ik for σ(k) and averaging over all σ ∈ Sn gives (A.29).

Lemma A.3.2. The cofactor matrix C of an n× n matrix A may be written as

Cij =
1

(n− 1)!
εii2···inεjj2···jnAi2j2 · · ·Ainjn . (A.32)

Proof. With the help of Lemma A.3.1, we may write C11 as

C11 =
1

(n− 1)!
ε1i2···inε1j2···jnAi2j2 · · ·Ainjn . (A.33)

For general i and j, let Ã be the matrix obtained from A by cyclically permuting

the first i rows and the first j columns. Let us call the permutations σ−1 and τ−1,

respectively. Then the (i, j)-minor of A is equal to the (1, 1)-minor of Ã and so by

the definition of the cofactor matrix,

Cij = (−1)i+jC̃11 =
1

(n− 1)!
ε1i′2···i′nε1j′2···j′nÃi′2j′2 · · · Ãi′nj′n . (A.34)
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Let us now apply σ to the indices 1, i′2, . . . , i
′
n and τ to the indices 1, j′2, . . . , j

′
n. Since

we have i = σ(1) and j = τ(1), this gives, upon writing ik for σ(i′k) and jk for τ(j′k),

Cij = (sgnσ)(sgn τ)
(−1)i+j

(n− 1)!
εii2···inεjj2···jnAi2j2 · · ·Ainjn . (A.35)

Since sgnσ = (−1)i−1 and sgn τ = (−1)j−1, this simplifies to (A.32).

Proposition A.3.3. If A is an n× n invertible matrix, then

A−1
ij =

1

(n− 1)! (detA)
εjj2···jnεii2···inAj2i2 · · ·Ajnin . (A.36)

Proof. We start from the standard linear algebra identity for the inverse of a matrix

A in terms of its cofactor matrix C,

A−1
ij =

Cji
detA

. (A.37)

Expanding Cji using Lemma A.3.2 gives (A.36).

Corollary A.3.4. For an invertible 3× 3 matrix A, we have

A−1
ij =

1

2(detA)
εik`εjpqApkAq` . (A.38)

If detA = 1, then

εirsA
−1
ij = εjpqAprAqs , (A.39)

εjrsA
−1
ij = εik`ArkAs` . (A.40)

Proof. Equation (A.38) is just a special case of Proposition (A.3.3). To obtain (A.39),

set detA = 1 and multiply by εirs. Using the identity

εirsεik` = δrkδs` − δr`δsk , (A.41)
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we find

εirsA
−1
ij =

1

2
εjpq(AprAqs − ApsAqr) . (A.42)

The final expression is obtained by observing that the second term is equal to the first:

− εjpqApsAqr = εjqpApsAqr = εjpqAqsApr . (A.43)

Here we first used εjpq = −εjqp and then switched the roles of the summation variables

p and q. The proof of (A.40) is similar.

A.4 Spherical averages

Following Appendix A in Evans [51], let us introduce the notation

α(n) =
πn/2

Γ
(
n
2

+ 1
) , (volume of unit ball in Rn) (A.44)

nα(n) =
nπn/2

Γ
(
n
2

+ 1
) . (surface area of unit ball in Rn) (A.45)

For a function u ∈ L1
loc(Rn), we denote spherical averages by

u(x, r) = −
∫
Sr(x)

u(y) dS(y) . (A.46)

Using the spherical coarea formula

∫
Br(x)

u(y) dy =

∫ r

0

∫
Sρ(x)

u(y) dS(y) dρ , (A.47)
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we find the following relation between averages over balls and spheres,

∫
Br(x)

u(y) dy = nα(n)

∫ r

0

ρn−1ū(x, ρ) dρ , (A.48)

−
∫
Br(x)

u(y) dy = nr1−n−
∫ r

0

ρn−1ū(x, ρ) dρ . (A.49)
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[20] Laurent Chevillard, Emmanuel Lévêque, Francesco Taddia, Charles Meneveau,
Huidan Yu, and Carlos Rosales. Local and nonlocal pressure Hessian effects in
real and synthetic fluid turbulence. Physics of Fluids, 23(095108), 2011.

[21] Alexandre J. Chorin. Vorticity and turbulence, volume 103 of Applied Mathe-
matical Sciences. Springer-Verlag, New York, 1994.

[22] P. Constantin. Local formulas for hydrodynamic pressure and their applications.
Uspekhi Mat. Nauk, 69(3(417)):3–26, 2014.

[23] Peter Constantin. Euler equations: derivation, basic invariants and formulae.

146



[24] Peter Constantin. Note on loss of regularity for solutions of the 3-D incom-
pressible Euler and related equations. Comm. Math. Phys., 104(2):311–326,
1986.

[25] Peter Constantin. An Eulerian-Lagrangian approach for incompressible fluids:
local theory. J. Amer. Math. Soc., 14(2):263–278 (electronic), 2001.

[26] Peter Constantin. An Eulerian-Lagrangian approach to the Navier-Stokes
equations. Comm. Math. Phys., 216(3):663–686, 2001.

[27] Peter Constantin. Some open problems and research directions in the mathe-
matical study of fluid dynamics. In Mathematics unlimited—2001 and beyond,
pages 353–360. Springer, Berlin, 2001.

[28] Peter Constantin. Lagrangian-Eulerian methods for uniqueness in hydrodynamic
systems. Adv. Math., 278:67–102, 2015.

[29] Peter Constantin and Charles Fefferman. Direction of vorticity and the problem
of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J.,
42(3):775–789, 1993.

[30] Peter Constantin, Charles Fefferman, and Andrew J. Majda. Geometric con-
straints on potentially singular solutions for the 3-D Euler equations. Comm.
Partial Differential Equations, 21(3-4):559–571, 1996.

[31] Peter Constantin and Ciprian Foias. Navier-Stokes equations. Chicago Lectures
in Mathematics. University of Chicago Press, Chicago, IL, 1988.

[32] Peter Constantin, Igor Kukavica, and Vlad Vicol. Contrast between Lagrangian
and Eulerian analytic regularity properties of Euler equations. arXiv preprint
arXiv:1504.00727, 2015.

[33] Peter Constantin and Andrew Majda. The Beltrami spectrum for incompressible
fluid flows. Comm. Math. Phys., 115(3):435–456, 1988.

[34] Peter Constantin, Vlad Vicol, and Jiahong Wu. Analyticity of Lagrangian
trajectories for well posed inviscid incompressible fluid models. arXiv preprint
arXiv:1403.5749, 2014.

[35] R. G. Cox. The dynamics of the spreading of liquids on a solid surface. Part 1.
Viscous flow. Journal of Fluid Mechanics, 168:169–194, 1986.

[36] Pierre-Gilles de Gennes, Françoise Brochard-Wyart, and David Quéré. Capillarity
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[37] Camillo De Lellis and László Székelyhidi, Jr. The Euler equations as a differential
inclusion. Ann. of Math. (2), 170(3):1417–1436, 2009.

147



[38] Daniel Depner. Stability Analysis of Geometric Evolution Equations with Triple
Lines and Boundary Contact. PhD thesis, Universität Regensburg, 2010.

[39] Daniel Depner, Harald Garcke, and Yoshihito Kohsaka. Mean curvature flow
with triple junctions in higher space dimensions. Archive for Rational Mechanics
and Analysis, 211(1):301–334, 2014.

[40] B. V. Derjaguin, N. V. Churaev, and V. M. Muller. Surface forces. Springer,
1987.

[41] Emmanuele DiBenedetto. Partial differential equations. Cornerstones. Birkhäuser
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